Главная / Технологии / Мельчайшие микрочипы на основе графена будут в 100 раз меньше кремниевых и работать в 1000 быстрее

Мельчайшие микрочипы на основе графена будут в 100 раз меньше кремниевых и работать в 1000 быстрее

Мельчайшие микрочипы на основе графена будут в 100 раз меньше кремниевых и работать в 1000 быстрее

Исследователям удалось создать микрочип на основе графена, который в 100 раз меньше существующих, что позволит создавать миниатюрные устройства для вычислений и хранения данных с колоссальными возможностями

Поскольку мы живем в цифровом мире, новые задачи, которые ставятся перед компютерной техникой требуют увеличения объёма памяти и вычислительной мощности устройств, а, соответственно, применения большого количества транзисторов. Так, например, уже сейчас у 64-ядерного процессора AMD имеется девять кристаллов, которые суммарно занимают площадь в 1008 кв. мм. Каждый процессорный кристалл площадю 74 мм2и содержит 3,9 млрд транзисторов. Кристалл ввода-вывода содержит 8,34 млрд транзисторов, а его площадь — 416 мм2. Несложно подсчитать, что суммарно процессоры второго поколения содержат 39,54 млрд транзисторов!

Таким образом, по мере того, как современные технологии становятся все более компактными и высокопроизводительными, должны быть и транзисторы минимального размера, которые являются строительными блоками компьютерной обработки данных.

Кремний, который использовался для изготовления транзисторов в течение шести десятилетий, является трехмерным материалом и из него практически невозможно изготовить меньшие чем существующие полупроводники. Ведь очень трудно выполнить элементы кремниевых транзисторов толщиной всего в несколько атомов.

Мельчайшие микрочипы на основе графена будут в 100 раз меньше кремниевых и работать в 1000 быстрее

Графен и наноматериалы на его основе рекламируются как чудесные материалы, и они действительно оказались бесценными во всех сферах применения. Исключительные электронные, тепловые, механические и оптические свойства сделали графен, состоящим всего из одного слоя атомов углерода, одним из наиболее перспективных материалов (CC0 Public Domain)

Проведенные исследования показали, что в качестве альтернативы при изготовлении транзисторов могут применяться двумерные материалы, из которых могут быть выполнены элементы тоньше существующих в 10 раз.

Ученые вырастили однослойный дисульфид молибдена и дисульфид вольфрама, которые можно использовать для полупроводников. Исследования показали, что данная технология может быть применена и в серийном производстве. То есть, по всем наиболее важным параметрам разработанное устройство соответствует высоким перспективным требованиям.

Исследования продолжены учеными из Университета Буффало, которые установили, что новый двумерный транзистор, изготовленный из графена и соединения дисульфида молибдена не только мал по размеру, но и требует вдвое меньшего напряжения, чем нынешние полупроводники. Он также может управлять большими токами, чем аналогичные существующие транзисторы. Эти возможности является ключевыми для удовлетворения спроса на новые энергоемкие наноэлектронные устройства, включая квантовые компьютеры.

Новые технологии позволят повысить производительность электронных систем с точки зрения мощности, скорости и плотности размещения элементов. Таким образом, транзистор следующего поколения может быстро переключаться, потребляя при этом небольшое количество энергии.

Транзистор состоит из одного слоя графена и одного слоя дисульфида молибдена, сложенных вместе, при этом общая толщина устройства около 1 нанометра — для сравнения, лист бумаги имеет толщину около 100 000 нанометров.

Мельчайшие микрочипы на основе графена будут в 100 раз меньше кремниевых и работать в 1000 быстрее

Иллюстрация транзистора, показывающего графен (черные шестиугольники) и дисульфид молибдена (синяя и желтая слоистая структура) среди других компонентов. Предоставлено: Университет Буффало

В то время как большинству транзисторов требуется 60 милливольт для управления током, это новое устройство работает при 29 милливольтах, что возможно благодаря уникальным физическим свойствам графена.

Еще более важной характеристикой нового двухмерного транзистора является его способность выдерживать большую плотность тока по сравнению с возможностями традиционных транзисторных технологий.

Эти новые транзисторы позволят изготавливать компьютеры следующего поколения более быстрыми, более энергоэффективными и способными выполнять колоссальный объём обработки и хранения данных.

Но существуют и еще более совершенные технологии использования графена в полупроводниках. Физики из Университета Сассекса, установили, что микрочипы очень малого размера можно также изготавливать из графена и других 2D-материалов, используя форму «нанооригами». Создавая складки (изломы) в структуре графена, исследователи заставили наноматериал вести себя как транзистор и установили, что, когда полоска графена изгибается определенным образом, то она может вести себя как микрочип, который примерно в 100 раз меньше чем обычные микрочипы. Такие исследования производятся впервые.

Мельчайшие микрочипы на основе графена будут в 100 раз меньше кремниевых и работать в 1000 быстрее

Основа 2D-материала с белыми линиями, показывающими структурные изгибы, которые после механических воздействий изменяют электрические свойства. Предоставлено: Университет Сассекса

Вместо того, чтобы добавлять посторонние материалы в устройство, ученые показали, что можно создавать структуры из графена и других двухмерных материалов, просто добавляя преднамеренные изгибы в структуру. Делая такого рода гофры, можно создать электронный компонент, такой как транзистор или логический вентиль.

Использование наноматериалов сделает чипы меньше и это абсолютно необходимо, поскольку производители компьютеров сейчас на пределе возможностей традиционных полупроводниковых технологий. В конечном итоге это сделает наши компьютеры и телефоны в будущем в тысячи раз быстрее. Такие технологии использования наноматериалов позволяют разместить больше микросхем внутри любого устройства и ускорить их, применив «сморщенный» графен.

Смотрите также

Nissan: гибридная силова установка e-POWER и тепловой КПД 50%

Nissan: гибридная силова установка e-POWER и тепловой КПД 50%

Гибридная установка e-POWER последовательного типа состоит из электромотора и дополнительного бензинового двигателя небольшого объёма, который при необходимости заряжает аккумуляторную батарею. В схеме e-Power движение обеспечивает только электромотор, который мощнее выбранного для машины бензинового.

Последняя разработка Nissan представляет собой следующее поколение гибридной системы e-Power, впервые представленной в 2016 году. В ней бензиновый двигатель используют исключительно для зарядки аккумуляторов системы электропривода.

Тепловой КПД обычного двигателя внутреннего сгорания – минимален, а тепловые потери — значительны.

Nissan: гибридная силова установка e-POWER и тепловой КПД 50%

Nissan(Other)

Nissan заявляет, что e-Power позволяет его двигателям быть более эффективными, потому что они используются только в качестве генератора для аккумулятора. Это позволяет двигателю оставаться в относительно узком диапазоне оборотов двигателя, которые обеспечивают наивысший КПД.

Транспортные средства с обычным двигателем внутреннего сгорания (ДВС) требуют мощности и производительности от двигателя в широком диапазоне скоростей (об/мин) и нагрузок. Это фундаментальное требование означает, что обычные двигатели не могут всегда работать с оптимальной эффективностью. Система e-POWER от Nissan использует бортовой двигатель в качестве специального генератора электроэнергии для электронной трансмиссии. Работа двигателя ограничена его наиболее эффективным диапазоном, регулируя соответствующим образом выработку двигателем электроэнергии и количество электроэнергии, хранящейся в батарее.

Тепловой КПД двигателя— отношение совершённой полезной работы двигателя к энергии, полученной от нагревателя.

Автопроизводители всегда стремятся к повышению эффективности, чтобы их двигатели лучше использовали сжигаемое топливо.Достижение 50-процентной эффективности — это большое дело.

Nissan: гибридная силова установка e-POWER и тепловой КПД 50%

Nissan(Other)

Чтобы получить это, казалось бы, волшебное число, фирма Nissan разработала концепцию STARC, которая увеличивает термический КПД.

«STARC» — аббревиатура слов «strong,», «tumble» и «appropriately stretched robust ignition channel» (сильный, кувыркающийся, надежный канал зажигания с соответствующим удлинением). Эта концепция позволяет повысить термический КПД за счет усиления потока газа в цилиндре (потока топливовоздушной смеси, которая втягивается в цилиндр) и зажигания, сжигая более разбавленную воздушно-топливную смесь при высокой степени сжатия.

Nissan: гибридная силова установка e-POWER и тепловой КПД 50%

Nissan подчеркивает, что для зарождения мощного начального фронта пламени и полного сгорания, важна стабильность и точность потока жидкости через свечу зажигания, особенно для разбавленных смесей и при высоких степенях сжатия (это позволяет повысить эффективность двигателя).
Nissan: гибридная силова установка e-POWER и тепловой КПД 50%
Модель изменения скорости жидкости в цилиндре во время такта сжатия.По словам Nissan, поддержание опрокидывания до конца такта сжатия является ключом к созданию стабильной скорости жидкости через свечу зажигания, что дает c-образный «канал выпуска» зажигания, который в конечном итоге позволяет полностью сжечь разбавленное топливо. смесь без стука.

Nissan заявляет, что в ходе своих внутренних испытаний удалось достичь теплового КПД 43% при использовании рециркуляции выхлопных газов и 50% при работе двигателя на фиксированных оборотах, фиксированной нагрузке и рециркуляции выхлопных газов.

Nissan: гибридная силова установка e-POWER и тепловой КПД 50%

Nissan(Other)

Nissan: гибридная силова установка e-POWER и тепловой КПД 50%

Гибридная установка e-POWER последовательного типа состоит из электромотора и дополнительного бензинового двигателя небольшого объёма, который при необходимости заряжает аккумуляторную батарею. В схеме e-Power движение обеспечивает только электромотор, который мощнее выбранного для машины бензинового.

Последняя разработка Nissan представляет собой следующее поколение гибридной системы e-Power, впервые представленной в 2016 году. В ней бензиновый двигатель используют исключительно для зарядки аккумуляторов системы электропривода.

Тепловой КПД обычного двигателя внутреннего сгорания – минимален, а тепловые потери — значительны.

Nissan: гибридная силова установка e-POWER и тепловой КПД 50%

Nissan(Other)

Nissan заявляет, что e-Power позволяет его двигателям быть более эффективными, потому что они используются только в качестве генератора для аккумулятора. Это позволяет двигателю оставаться в относительно узком диапазоне оборотов двигателя, которые обеспечивают наивысший КПД.

Транспортные средства с обычным двигателем внутреннего сгорания (ДВС) требуют мощности и производительности от двигателя в широком диапазоне скоростей (об/мин) и нагрузок. Это фундаментальное требование означает, что обычные двигатели не могут всегда работать с оптимальной эффективностью. Система e-POWER от Nissan использует бортовой двигатель в качестве специального генератора электроэнергии для электронной трансмиссии. Работа двигателя ограничена его наиболее эффективным диапазоном, регулируя соответствующим образом выработку двигателем электроэнергии и количество электроэнергии, хранящейся в батарее.

Тепловой КПД двигателя— отношение совершённой полезной работы двигателя к энергии, полученной от нагревателя.

Автопроизводители всегда стремятся к повышению эффективности, чтобы их двигатели лучше использовали сжигаемое топливо.Достижение 50-процентной эффективности — это большое дело.

Nissan: гибридная силова установка e-POWER и тепловой КПД 50%

Nissan(Other)

Чтобы получить это, казалось бы, волшебное число, фирма Nissan разработала концепцию STARC, которая увеличивает термический КПД.

«STARC» — аббревиатура слов «strong,», «tumble» и «appropriately stretched robust ignition channel» (сильный, кувыркающийся, надежный канал зажигания с соответствующим удлинением). Эта концепция позволяет повысить термический КПД за счет усиления потока газа в цилиндре (потока топливовоздушной смеси, которая втягивается в цилиндр) и зажигания, сжигая более разбавленную воздушно-топливную смесь при высокой степени сжатия.

Nissan: гибридная силова установка e-POWER и тепловой КПД 50%

Nissan подчеркивает, что для зарождения мощного начального фронта пламени и полного сгорания, важна стабильность и точность потока жидкости через свечу зажигания, особенно для разбавленных смесей и при высоких степенях сжатия (это позволяет повысить эффективность двигателя).
Nissan: гибридная силова установка e-POWER и тепловой КПД 50%
Модель изменения скорости жидкости в цилиндре во время такта сжатия.По словам Nissan, поддержание опрокидывания до конца такта сжатия является ключом к созданию стабильной скорости жидкости через свечу зажигания, что дает c-образный «канал выпуска» зажигания, который в конечном итоге позволяет полностью сжечь разбавленное топливо. смесь без стука.

Nissan заявляет, что в ходе своих внутренних испытаний удалось достичь теплового КПД 43% при использовании рециркуляции выхлопных газов и 50% при работе двигателя на фиксированных оборотах, фиксированной нагрузке и рециркуляции выхлопных газов.

Nissan: гибридная силова установка e-POWER и тепловой КПД 50%

Nissan(Other)

Исключительные свойства оптических волокон нового поколения

Исключительные свойства оптических волокон нового поколения

Исследователи из Саутгемптонского университета и Университета Лаваля, Канада, создали оптические волокна с полой сердцевиной и измерили обратное отражение в них, которое примерно в 10 000 раз меньше, чем у обычных оптических волокон. Данные разработки позволят снизить потери, которые в настоящее время наблюдаются в стандартных стеклянных оптических волокнах.

Оптические волокна из кварцевого стекла традиционно используются для высокоскоростной оптической связи, обеспечивающей работу Интернета и облачных сервисов. Однако, из-за рассеяния света внутри стекла часть мощности теряется в процессе передачи (явление известно, как затухание).

При передаче более коротких длин волн света, ослабление сигнала увеличивается. Таким образом, значительные потери при передаче по оптоволокну ограничивают возможности его использования в случаях, когда требуется передать именно более короткие длины волн света.

В новом исследовании, ученые из Саутгемптонского университета продемонстрировали, что направление света через наполненные воздухом волокна позволяет решить эту проблему.

Исключительные свойства оптических волокон нового поколения

В новых оптических волокнах полая сердцевина окружена множеством тонких стеклянных по-верхностей выбранной толщины, которые действуют как зеркала для определенных длин волн и помогают удерживать свет в полости. Это позволяет снизить потери мощности, которые в настоящее время наблюдаются в стандартных стеклянных волокнах. Предоставлено Саутгемптонским университетом.

Команда исследователей создала полые волокна с потерями, меньшими, чем те, которые достигаются в твердых стеклянных волокнах на технологически важных длинах волн 660, 850 и 1060 нанометров. Направляя свет через наполненные воздухом волокна, исследователи значительно снизили затухание, а также ограничения, которые оно вызывает. Более низкое затухание в волокне, которое направляет свет через воздух, открывает возможности для достижений в квантовой связи, передаче данных и доставке лазерной энергии.

Исключительные свойства оптических волокон нового поколения

Учёным удалось создать опытный образец антирезонансного микроструктурированного све-товода с полой сердцевиной. Изделие обладает нетипичным для волоконной оптики механиз-мом формирования и удержания в сердцевине передаваемого излучения: свет отражается от кварцевых стенок, окружающих полую сердцевину, за счёт явления антирезонанса. Благодаря этому эффекту оптоволокно имеет широкие перспективы применения.

На последующих этапах были разработаны поверхности, имеющие физическую форму, подобную форме вложенных или гнездовых трубок. Конструкция обеспечивала формирование мод (моды — возможные направления распространения луча), которые исследователи направляли через воздушную сердцевину своего волокна. Оригинальность конструкции помогает сохранить яркость испускаемого лазерного света с низкими потерями на распространение (минимизация количества фотонов, теряемых при распространении). Они также сохранили степень поляризации света, необходимую для улучшения существующих сенсорных технологий и эндоскопических устройств. Это важно, поскольку свет, направляемый вдоль волокна, будет распространяться со стабильным распределением и не будет подвергаться изменениям или внешним возмущениям.

Исключительные свойства оптических волокон нового поколения

В отличие от обычного волоконно-оптического кабеля, в котором свет движется через стекло или пластик, пустотелые обладают повышенной скоростью передачи и меньшими потерями сигнала

Исследования улучшенных оптических волокон — ключ к успеху во многих фотонных приложениях. В частности, это улучшит производительность Интернета, который в значительной степени зависит от оптических волокон для передачи данных, где существующие технологии достигают предела своих возможностей.

Проблема измерения сигналов, рассеянных обратно в полых волокнах

У оптического волокна свет, попадающий в него, по мере распространения частично отражается назад, что называется обратным рассеянием. Это обратное рассеяние часто крайне нежелательно, поскольку оно вызывает ослабление сигналов, распространяющихся по оптическому волокну, и ограничивает производительность многих волоконно-оптических устройств, таких как оптоволоконные гироскопы, которые используются для навигации на авиалайнерах, подводных лодках и космических кораблях.

Однако возможность надежного и точного измерения обратного рассеяния может быть полезна также и в других случаях, например, при определении характеристик волоконных кабелей, где обратное рассеяние используется для контроля состояния кабеля и определения местоположения любых разрывов по его длине.

Но последнее поколение вложенных антирезонансных безузловых волокон с полой сердцевиной (NANF) демонстрируют обратное рассеяние, которое настолько низкое, что его было невозможно измерить.

Чтобы решить эту проблему, исследователи Центра исследований оптоэлектроники (ORC) Саутгемптонского университета объединились с коллегами из Центра оптики, фотоники и лазеров (COPL) Университета Лаваля, Квебек.

Они разработали прибор, который позволил измерить чрезвычайно слабые сигналы, рассеянные обратно в полых волокнах. Устройство позволило подтвердить теоретические предсказания о том, что обратное рассеяние на четыре порядка меньше, чем в стандартных полностью стеклянных световодах.

Оптические волокна с полой сердцевиной — новые возможности использования

Новые волокна с полой сердцевиной обладают потенциалом, превосходящим существующие оптические волокна на различных длинах волн, используемых сегодня в оптических технологиях. Они не только имеют более низкое затухание, но и также могут выдерживать высокие интенсивности лазерного излучения, например, необходимые для плавления горных пород и бурения нефтяных скважин, а также для производства совершенных лазеров.

Волокна с полой сердцевиной также могут передавать неискаженные лазерные импульсы с пиковыми уровнями мощности, достаточно высокими, которые было невозможно передавать по стандартным стеклянным волокнам. Кроме того они сохраняют поляризацию света, необходимую для создания более точных датчиков и эндоскопов для визуализации скрытых объектов.

Предлагаемая технология имеет потенциал для использования в более быстрых центрах обработки данных с более короткими задержками для конечного пользователя, более точных гироскопов для межпланетных миссий, более эффективного производства на основе лазеров и многих других.

Исключительные свойства оптических волокон нового поколения

Волокна с полой сердцевиной обеспечат более быстрый и надежный Интернет с большей про-пускной способностью поможет поддерживать высокий уровень онлайн-работы и общения, а также позволит продвинуться дальше в таких областях, как 3D-видеоконференции и вирту-альная реальность.

Исключительные свойства оптических волокон нового поколения

Исследователи из Саутгемптонского университета и Университета Лаваля, Канада, создали оптические волокна с полой сердцевиной и измерили обратное отражение в них, которое примерно в 10 000 раз меньше, чем у обычных оптических волокон. Данные разработки позволят снизить потери, которые в настоящее время наблюдаются в стандартных стеклянных оптических волокнах.

Оптические волокна из кварцевого стекла традиционно используются для высокоскоростной оптической связи, обеспечивающей работу Интернета и облачных сервисов. Однако, из-за рассеяния света внутри стекла часть мощности теряется в процессе передачи (явление известно, как затухание).

При передаче более коротких длин волн света, ослабление сигнала увеличивается. Таким образом, значительные потери при передаче по оптоволокну ограничивают возможности его использования в случаях, когда требуется передать именно более короткие длины волн света.

В новом исследовании, ученые из Саутгемптонского университета продемонстрировали, что направление света через наполненные воздухом волокна позволяет решить эту проблему.

Исключительные свойства оптических волокон нового поколения

В новых оптических волокнах полая сердцевина окружена множеством тонких стеклянных по-верхностей выбранной толщины, которые действуют как зеркала для определенных длин волн и помогают удерживать свет в полости. Это позволяет снизить потери мощности, которые в настоящее время наблюдаются в стандартных стеклянных волокнах. Предоставлено Саутгемптонским университетом.

Команда исследователей создала полые волокна с потерями, меньшими, чем те, которые достигаются в твердых стеклянных волокнах на технологически важных длинах волн 660, 850 и 1060 нанометров. Направляя свет через наполненные воздухом волокна, исследователи значительно снизили затухание, а также ограничения, которые оно вызывает. Более низкое затухание в волокне, которое направляет свет через воздух, открывает возможности для достижений в квантовой связи, передаче данных и доставке лазерной энергии.

Исключительные свойства оптических волокон нового поколения

Учёным удалось создать опытный образец антирезонансного микроструктурированного све-товода с полой сердцевиной. Изделие обладает нетипичным для волоконной оптики механиз-мом формирования и удержания в сердцевине передаваемого излучения: свет отражается от кварцевых стенок, окружающих полую сердцевину, за счёт явления антирезонанса. Благодаря этому эффекту оптоволокно имеет широкие перспективы применения.

На последующих этапах были разработаны поверхности, имеющие физическую форму, подобную форме вложенных или гнездовых трубок. Конструкция обеспечивала формирование мод (моды — возможные направления распространения луча), которые исследователи направляли через воздушную сердцевину своего волокна. Оригинальность конструкции помогает сохранить яркость испускаемого лазерного света с низкими потерями на распространение (минимизация количества фотонов, теряемых при распространении). Они также сохранили степень поляризации света, необходимую для улучшения существующих сенсорных технологий и эндоскопических устройств. Это важно, поскольку свет, направляемый вдоль волокна, будет распространяться со стабильным распределением и не будет подвергаться изменениям или внешним возмущениям.

Исключительные свойства оптических волокон нового поколения

В отличие от обычного волоконно-оптического кабеля, в котором свет движется через стекло или пластик, пустотелые обладают повышенной скоростью передачи и меньшими потерями сигнала

Исследования улучшенных оптических волокон — ключ к успеху во многих фотонных приложениях. В частности, это улучшит производительность Интернета, который в значительной степени зависит от оптических волокон для передачи данных, где существующие технологии достигают предела своих возможностей.

Проблема измерения сигналов, рассеянных обратно в полых волокнах

У оптического волокна свет, попадающий в него, по мере распространения частично отражается назад, что называется обратным рассеянием. Это обратное рассеяние часто крайне нежелательно, поскольку оно вызывает ослабление сигналов, распространяющихся по оптическому волокну, и ограничивает производительность многих волоконно-оптических устройств, таких как оптоволоконные гироскопы, которые используются для навигации на авиалайнерах, подводных лодках и космических кораблях.

Однако возможность надежного и точного измерения обратного рассеяния может быть полезна также и в других случаях, например, при определении характеристик волоконных кабелей, где обратное рассеяние используется для контроля состояния кабеля и определения местоположения любых разрывов по его длине.

Но последнее поколение вложенных антирезонансных безузловых волокон с полой сердцевиной (NANF) демонстрируют обратное рассеяние, которое настолько низкое, что его было невозможно измерить.

Чтобы решить эту проблему, исследователи Центра исследований оптоэлектроники (ORC) Саутгемптонского университета объединились с коллегами из Центра оптики, фотоники и лазеров (COPL) Университета Лаваля, Квебек.

Они разработали прибор, который позволил измерить чрезвычайно слабые сигналы, рассеянные обратно в полых волокнах. Устройство позволило подтвердить теоретические предсказания о том, что обратное рассеяние на четыре порядка меньше, чем в стандартных полностью стеклянных световодах.

Оптические волокна с полой сердцевиной — новые возможности использования

Новые волокна с полой сердцевиной обладают потенциалом, превосходящим существующие оптические волокна на различных длинах волн, используемых сегодня в оптических технологиях. Они не только имеют более низкое затухание, но и также могут выдерживать высокие интенсивности лазерного излучения, например, необходимые для плавления горных пород и бурения нефтяных скважин, а также для производства совершенных лазеров.

Волокна с полой сердцевиной также могут передавать неискаженные лазерные импульсы с пиковыми уровнями мощности, достаточно высокими, которые было невозможно передавать по стандартным стеклянным волокнам. Кроме того они сохраняют поляризацию света, необходимую для создания более точных датчиков и эндоскопов для визуализации скрытых объектов.

Предлагаемая технология имеет потенциал для использования в более быстрых центрах обработки данных с более короткими задержками для конечного пользователя, более точных гироскопов для межпланетных миссий, более эффективного производства на основе лазеров и многих других.

Исключительные свойства оптических волокон нового поколения

Волокна с полой сердцевиной обеспечат более быстрый и надежный Интернет с большей про-пускной способностью поможет поддерживать высокий уровень онлайн-работы и общения, а также позволит продвинуться дальше в таких областях, как 3D-видеоконференции и вирту-альная реальность.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *