Последние новости
Главная / Наука / Знакомьтесь — Пи-тон, новая квазичастица, обнаруженная учеными при помощи компьютерного моделирования

Знакомьтесь — Пи-тон, новая квазичастица, обнаруженная учеными при помощи компьютерного моделирования

Знакомьтесь - Пи-тон, новая квазичастица, обнаруженная учеными при помощи компьютерного моделирования

В физике существует множество вещей, которые попадают под определение «частица». Элементарные частицы, являющиеся фундаментальными блоками, из которых состоит вся материя, атомы и другие конгломераты, состоящие из связанных друг с другом меньших частиц, и, наконец, так называемые квазичастицы — сложные неоднородные системы, находящиеся, как правило, в возбужденном энергетическом состоянии, поведение которых можно характеризовать, как поведение отдельной частицы. Не так давно исследователи из Венского технологического университета (TU Wien), проводя сложное компьютерное моделирование, обнаружили новую квазичастицу, которая получила название Пи-тон (Pi-ton). Эта квазичастица состоит из связанных двух электронов и двух электронных дырок и сейчас ученые работают над обнаружением Пи-тона экспериментальным путем.

Самой простой квазичастицей является электронная дырка. Что это такое? Представьте себе упорядоченную кристаллическую решетку, в которой атомы связаны с соседними атомами при помощи электронов, а теперь представьте, что в одном месте решетки электрон отсутствует, и это место называют электронной дырой. Электронная дыра способна перемещаться, захватывая электрон у соседнего атома и возникая уже в другом месте. Эта квазичастица играет огромную роль в нашей повседневной жизни, ведь она является носителем положительного электрического заряда в полупроводниках p-типа, которые присутствуют в структуре каждого транзистора, находящегося на кристалле полупроводниковых чипов, используемых во всех электронных устройствах.

Существуют и более сложные квазичастицы, к примеру, экситоны, о которых мы рассказывали на страницах нашего сайта достаточно много. Экситон состоит из связанных электрона и электронной дырки, а возникают они при поглощении полупроводниковым материалом фотона света с определенными характеристиками. В состав экситона входит положительная и отрицательная частицы, таким образом, сам экситон электрически нейтрален, и это его свойство широко используется в электронике, в технологиях преобразования энергии света в электричество и т.п.

Именно исследованиями, связанными с экситонами, и занимались австрийские физики, проводя эксперименты с математическим моделированием. Через некоторое время в результатах моделирования начали проявляться некоторые странности и ученые поняли, что они столкнулись с квазичастицами совершенно нового типа. Характеристики этих квазичастиц указали на то, что они состоят из двух электронов и электронных дыр, они, как и экситоны, возникают при поглощении материалом фотона света и излучают фотон света, когда распадаются.

Изучение новых квазичастиц показало, что электроны и дырки в них связаны более сложным образом — колебаниями плотности распределения общего электрического заряда. При этом, на каждом цикле колебания области распределения отрицательных и положительных зарядов внутри квазичастицы поворачиваются на 180 градусов, на число Пи, если этот угол представить в радианах. Именно от этого новой квазичастице и было дано название Пи-тон.

Как уже упоминалось выше, новая квазичастица изначально было обнаружена в недрах компьютерной математической модели. После этого австрийские ученые повторили свои эксперименты с помощью других математических моделей и во всех полученных результатах были обнаружены следы Пи-тонов. Сейчас же ученые уже начали экспериментировать с различными реальными материалами, а самым перспективным в этой точки зрения является титанат самария, некоторые эффекты в среде которого указывают на присутствие там Пи-тонов. И дополнительные эксперименты с фотонами и нейтронами должны в скором времени внести полную ясность в данный вопрос.

Несмотря на то, что мир физики уже буквально полон квазичастицами различных типов, открытие нового типа является выдающимся событием. Теперь, помимо экситона, в данном семействе квазичастиц находится и Пи-тон. Это, в свою очередь, должно раздвинуть границы нашего понимания взаимодействия материи со светом, аспекта, играющего ключевую роль в некоторых практических областях, включая электронику, фотонику, технологии сбора солнечной энергии и многое другое.

Смотрите также

Ученым впервые удалось добиться взаимодействия между двумя пространственно-временными кристаллами

Ученым впервые удалось добиться взаимодействия между двумя пространственно-временными кристаллами

Ученым, впервые в истории науки, удалось засвидетельствовать взаимодействие между двумя материальными образованиями, которые находятся в особом квантовом состоянии, известном под названием «пространственно-временные кристаллы». Результаты данного достижения могут стать основой новых технологий обработки квантовой информации из-за того, что структура пространственно-временных кристаллов остается стабильной и сохраняет свою последовательность, невзирая на изменяющиеся условия окружающей среды. И именно эта стабильность сможет обеспечить надежную работу процессоров мощных квантовых компьютеров, состоящих из сотен и тысяч квантовых битов, кубитов.

Напомним нашим читателям, что пространственно-временные кристаллы практически не имеют ничего общего с обычными кристаллами, которые состоят из соединенных друг с другом атомов, формирующих повторяющуюся в пространстве решетчатую структуру. Теоретическую возможность существования пространственно-временных кристаллов обосновал в 2012 году Нобелевский лауреат Фрэнк Вильчек (Frank Wilczek), а уже в 2016 году ученым удалось создать и наблюдать поведение частиц первого реального пространственно-временного кристалла.

Частицы, из которых состоят пространственно-временные кристаллы, находятся в постоянном движении, они колеблются, вращаются и перемещаются в разных направлениях. Но, несмотря на такое сложное движение, через строго определенные промежутки времени структура всего кристалла возвращается к своей исходной форме, невзирая на любые внешние воздействия.

Международная группа ученых из университетов Ланкастера и Йельского университета, Великобритания, университета Аальто, Хельсинки, создала пространственно-временные кристаллы в среде гелия-3, редкого изотопа гелия, в ядре которого не хватает одного нейтрона. Сверхтекучий гелий-3 был охлажден до температуры в одну десятитысячную градуса выше точки абсолютного нуля (0.0001K или -273.15 градуса Цельсия). И в получившейся после такого охлаждения сверхтекучей жидкости (супержидкости) ученым удалось индуцировать два кристалла, которые слегка «затрагивали» друг друга.

Заглянув в объем супержидкости при помощи специализированного оборудования, ученые увидели, что два кристалла взаимодействуют друг с другом. Частицы одного кристалла, не нарушая его структуры, постоянно перетекают в другой пространственно-временной кристалл и через некоторое время возвращаются назад в процессе, известном под названием эффекта Джозефсона (Josephson effect).

И в заключение следует отметить, что у пространственно-временных кристаллов имеется очень большой потенциал для их практического применения. При их помощи могут быть созданы новые атомные часы, имеющие точность, близкую к максимально возможному теоретическому пределу, на основе таких кристаллов могут быть созданы высокоточные гироскопы и масса других вещей, где пространственно-временные кристаллы будут выступать высокостабильными источниками эталонных сигналов.

Ученым впервые удалось добиться взаимодействия между двумя пространственно-временными кристаллами

Ученым, впервые в истории науки, удалось засвидетельствовать взаимодействие между двумя материальными образованиями, которые находятся в особом квантовом состоянии, известном под названием «пространственно-временные кристаллы». Результаты данного достижения могут стать основой новых технологий обработки квантовой информации из-за того, что структура пространственно-временных кристаллов остается стабильной и сохраняет свою последовательность, невзирая на изменяющиеся условия окружающей среды. И именно эта стабильность сможет обеспечить надежную работу процессоров мощных квантовых компьютеров, состоящих из сотен и тысяч квантовых битов, кубитов.

Напомним нашим читателям, что пространственно-временные кристаллы практически не имеют ничего общего с обычными кристаллами, которые состоят из соединенных друг с другом атомов, формирующих повторяющуюся в пространстве решетчатую структуру. Теоретическую возможность существования пространственно-временных кристаллов обосновал в 2012 году Нобелевский лауреат Фрэнк Вильчек (Frank Wilczek), а уже в 2016 году ученым удалось создать и наблюдать поведение частиц первого реального пространственно-временного кристалла.

Частицы, из которых состоят пространственно-временные кристаллы, находятся в постоянном движении, они колеблются, вращаются и перемещаются в разных направлениях. Но, несмотря на такое сложное движение, через строго определенные промежутки времени структура всего кристалла возвращается к своей исходной форме, невзирая на любые внешние воздействия.

Международная группа ученых из университетов Ланкастера и Йельского университета, Великобритания, университета Аальто, Хельсинки, создала пространственно-временные кристаллы в среде гелия-3, редкого изотопа гелия, в ядре которого не хватает одного нейтрона. Сверхтекучий гелий-3 был охлажден до температуры в одну десятитысячную градуса выше точки абсолютного нуля (0.0001K или -273.15 градуса Цельсия). И в получившейся после такого охлаждения сверхтекучей жидкости (супержидкости) ученым удалось индуцировать два кристалла, которые слегка «затрагивали» друг друга.

Заглянув в объем супержидкости при помощи специализированного оборудования, ученые увидели, что два кристалла взаимодействуют друг с другом. Частицы одного кристалла, не нарушая его структуры, постоянно перетекают в другой пространственно-временной кристалл и через некоторое время возвращаются назад в процессе, известном под названием эффекта Джозефсона (Josephson effect).

И в заключение следует отметить, что у пространственно-временных кристаллов имеется очень большой потенциал для их практического применения. При их помощи могут быть созданы новые атомные часы, имеющие точность, близкую к максимально возможному теоретическому пределу, на основе таких кристаллов могут быть созданы высокоточные гироскопы и масса других вещей, где пространственно-временные кристаллы будут выступать высокостабильными источниками эталонных сигналов.

Пространственно-временные волновые пакеты: Свет нового класса лазера бросает вызов фундаментальным законам физики

Пространственно-временные волновые пакеты: Свет нового класса лазера бросает вызов фундаментальным законам физики

Ученым удалось создать лазер совершенно нового класса, луч света которого не подчиняется некоторым фундаментальным законам физики и оптики. Лучи света этого лазера, которые ученые окрестили термином «пространственно-временные волновые пакеты» (spacetime wave packets), подчиняются каким-то особым правилам отражения и преломления. И эти новые правила можно будет в будущем поставить на службу людям в области коммуникационных технологий в первую очередь.

Из школьного учебника физики нам известно, что свет движется с различной скоростью в среде различных материалов. И чем больше плотность материала, через который проходит свет, тем с меньшей скоростью он, свет, движется в объеме этого материала. Наглядной демонстрацией этого принципа, который называется законом Снеллиуса, является ложка, опущенная в стакан с водой. За счет разницы между плотностями воздуха и воды кажется, что ложка «сломана» на границе контакта воздуха и воды.

Однако, лучи света нового лазера полностью игнорируют закон Снеллиуса. Более того, эти лучи не подчиняются второму из фундаментальных законов — принципу Ферма, который определяет, что свет всегда распространяется по самому короткому пути.

«Лучи пространственно-временных волновых пакетов могут быть настроены так, что они не изменят свою скорость или даже аномально ускорятся, проходя из менее плотного материала в более плотный материал» — пишут исследователи — «При помощи этого явления можно будет сделать так, что два импульса, излученные в разные моменты времени, окажутся в одной точке пространства одновременно, или так, что излученные в один момент импульсы окажутся в двух различных точках пространства одновременно».

Такие возможности, которые открывает нам использование пространственно-временных волновых пакетов, может иметь очень серьезные последствия для телекоммуникационной области. Ученые приводят в качестве примера синхронную отсылку сообщений с самолета на две субмарины, находящиеся на одной глубине, но на разном удалении от самолета.

С первого взгляда может показаться, что технология пространственно-временных волновых пакетов противоречит ряду ключевых законов классической физики, но ученые утверждают, что на самом деле все происходит в полном соответствии со Специальной теорией относительности. Ведь данная технология не оперирует собственно колебаниями электромагнитных волн фотонов света, а контролирует скорость, с которой движутся максимумы колебаний волн света. И делается это при помощи устройства, называемого пространственным оптическим модулятором, который реорганизовывает энергию каждого импульса света, «переплетая» его некоторые свойства в пространстве и времени.

«Пространственно-временное преломление света ломает многие из известных нам законов и принципов» — пишут исследователи, — «Но в качестве компенсации этого оно, это явление, дает нам массу новых возможностей для управления распространением света и некоторых его свойств».

Пространственно-временные волновые пакеты: Свет нового класса лазера бросает вызов фундаментальным законам физики

Ученым удалось создать лазер совершенно нового класса, луч света которого не подчиняется некоторым фундаментальным законам физики и оптики. Лучи света этого лазера, которые ученые окрестили термином «пространственно-временные волновые пакеты» (spacetime wave packets), подчиняются каким-то особым правилам отражения и преломления. И эти новые правила можно будет в будущем поставить на службу людям в области коммуникационных технологий в первую очередь.

Из школьного учебника физики нам известно, что свет движется с различной скоростью в среде различных материалов. И чем больше плотность материала, через который проходит свет, тем с меньшей скоростью он, свет, движется в объеме этого материала. Наглядной демонстрацией этого принципа, который называется законом Снеллиуса, является ложка, опущенная в стакан с водой. За счет разницы между плотностями воздуха и воды кажется, что ложка «сломана» на границе контакта воздуха и воды.

Однако, лучи света нового лазера полностью игнорируют закон Снеллиуса. Более того, эти лучи не подчиняются второму из фундаментальных законов — принципу Ферма, который определяет, что свет всегда распространяется по самому короткому пути.

«Лучи пространственно-временных волновых пакетов могут быть настроены так, что они не изменят свою скорость или даже аномально ускорятся, проходя из менее плотного материала в более плотный материал» — пишут исследователи — «При помощи этого явления можно будет сделать так, что два импульса, излученные в разные моменты времени, окажутся в одной точке пространства одновременно, или так, что излученные в один момент импульсы окажутся в двух различных точках пространства одновременно».

Такие возможности, которые открывает нам использование пространственно-временных волновых пакетов, может иметь очень серьезные последствия для телекоммуникационной области. Ученые приводят в качестве примера синхронную отсылку сообщений с самолета на две субмарины, находящиеся на одной глубине, но на разном удалении от самолета.

С первого взгляда может показаться, что технология пространственно-временных волновых пакетов противоречит ряду ключевых законов классической физики, но ученые утверждают, что на самом деле все происходит в полном соответствии со Специальной теорией относительности. Ведь данная технология не оперирует собственно колебаниями электромагнитных волн фотонов света, а контролирует скорость, с которой движутся максимумы колебаний волн света. И делается это при помощи устройства, называемого пространственным оптическим модулятором, который реорганизовывает энергию каждого импульса света, «переплетая» его некоторые свойства в пространстве и времени.

«Пространственно-временное преломление света ломает многие из известных нам законов и принципов» — пишут исследователи, — «Но в качестве компенсации этого оно, это явление, дает нам массу новых возможностей для управления распространением света и некоторых его свойств».

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *