Главная / Наука / Ученым удалось развернуть время вспять, используя кубиты квантового компьютера

Ученым удалось развернуть время вспять, используя кубиты квантового компьютера

Ученым удалось развернуть время вспять, используя кубиты квантового компьютера

Мы все ужи давно привыкли считать течение времени от прошлого к будущему в нашей повседневной жизни, как нечто само собой разумеющееся. Но, оказывается, что некоторые из фундаментальных законов физики на самом деле «хорошо работают» в обе стороны течения времени, что показали исследования американских и российских физиков, проведенные еще в 2019 году. В этих экспериментах ученым удалось буквально «повернуть время вспять» на микроскопическом квантовом уровне, это, конечно, не поможет нам заглянуть назад в 1960-е годы, но, тем не менее, оставляет очень маленькую лазейку для возможности создания квантовой машины времени.

Фундаментальный физический закон, который был «повернут вспять» учеными, это Второй закон термодинамики, являющийся одним из базовых законов, определяющих все происходящее вокруг нас во Вселенной. Согласно этому закону, энергия, заключенная в различных объектах, постоянно трансформируется и перетекает от более горячих объектов к более холодным. Этот принцип объясняет, почему кофе в чашке остынет через некоторое время или почему нельзя создать реальный вечный двигатель.

«Этот закон тесно связан с понятием направления времени, и он устанавливает одностороннее направление времени от прошлого к будущему» — рассказывает Гордей Лесовик, ученый-физик из Московского физико-технического института (МФТИ).

В упомянутых выше экспериментах ученые использовали электроны в качестве подопытных объектов, да не простые электроны, а электроны, которые были основной частью кубитов (квантовых битов) квантового компьютера. Природа и поведение электронов на квантовом уровне определяется так называемым уравнением Шредингера. И с точки зрения этого уравнения электрон является пакетом волн, движущимся сразу в нескольких направлениях.

«Однако, уравнение Шредингера обратимо с точки зрения направления течения времени» — рассказывает Валерий Винокур, ученый из Национальной лаборатории Аргона, США, — «С математической точки зрения это означает, что при определенных условиях и череде соответствующих преобразований электрон может «соскользнуть назад во времени»».

В природе не существует никаких причин, мешающих спонтанному «соскальзыванию» электрона назад во времени. Но для того, чтобы зафиксировать такой случай может потребоваться ежесекундное наблюдение за 10 миллиардами электронов одновременно, производимое на протяжении срока, сопоставимого с длительностью существования Вселенной.

Вместо того, чтобы ждать столь долгий срок, ученые использовали неопределенное состояние кубитов квантового компьютера и некоторые особые алгоритмы. Когда этот компьютер был запущен, то кубиты перешли в одно, можно сказать случайное, состояние из диапазона всех возможных состояний. Изменив некоторые настройки квантового компьютера, и запустив его снова, ученые эффективно «перемотали» назад во времени уравнение Шредингера.

В качестве примера из жизни можно привести следующее — представьте, что первый запуск квантового компьютера был чем-то вроде первого удара, разбившего пирамиду из бильярдных шаров, и разметавшего эти шары по поверхности стола. Второй запуск компьютера стал своего рода толчком бильярдного стола, из-за которого все шары вернулись на исходную позицию, снова сформировав изначальную пирамиду.

Для проверки технологии работы ученые «разворота времени» ученые провели один и тот же эксперимент множество раз, «разбивая» пирамиду шаров и собирая ее назад. В системе из двух кубитов квантового компьютера это удавалось сделать приблизительно в 85 процентах случаев.

Отметим, что это не первый случай, когда этой же группе ученых удавалось хорошенько «перетряхнуть» Второй закон термодинамики. Несколько лет назад эти ученые запутали частицы на квантовом уровне и сумели осуществить их нагрев и охлаждение так, что их поведение соответствовало поведению эффективного вечного двигателя.

Как уже упоминалось выше, все сделанное американскими и российскими ученым оставляет лазейку для возможности создания машины времени. Однако, результаты этих исследований могут иметь и более практическую ценность, технология «реверсирования времени» может оказаться тем, что позволит значительно улучшить точность и эффективность работы будущих квантовых компьютеров. И, конечно, все это значительно расширяет границы нашего понимания того, как происходящее на квантовом уровне определяет и влияет на процессы гораздо больших масштабов, включая процессы эволюции окружающей нас Вселенной.

Смотрите также

Ученые-физики, возможно, получили первые экспериментальные доказательства существования «темного бозона»

Ученые-физики, возможно, получили первые экспериментальные доказательства существования "темного бозона"

Две независимые группы ученых, принимающие участие в «охоте» на частицы таинственной темной материи, опубликовали недавно результаты своих исследований, которые вступают в достаточно сильное противоречие. Первая из упомянутых групп вообще не получила никаких достоверных результатов в отличие от второй группы. А в результатах, полученных второй группой, возможно, присутствуют первые экспериментальные доказательства существования «темных бозонов», что дает ученым все основания на продолжение поиска и исследований в данном направлении.

Темные бозоны уже некоторое время являются кандидатами на звание частиц темной материи, таинственной субстанции, на долю которой приходится большая часть от всей материи во Вселенной и которая силами своей гравитации удерживает такие громадные космические образования, как галактики и скопления галактик.

К сожалению, обнаружение «темных» бозонов в нашем «светлом» мире столь же сложно, как попытка услышать шепот на большом расстоянии во время шторма. Однако, физикам, вооруженным сверхчувствительными научными приборами, может вполне хватать и уровня «шепота», для них сейчас самым главным является постановка своего эксперимента в идеально подходящих для него условиях.

Две исследовательские группы, о которых речь шла немного выше, одна из Массачусетского технологического института (MIT), другая — из Орхусского университета в Дании, проводили очень схожие эксперименты. Ученые искали очень малые различия в положении электрона атома изотопа, который перескакивал между дискретными энергетическими уровнями. Если бы эти различия были найдены, это могло указать на возможность «толчка» со стороны темного бозона, который возник бы в результате взаимодействия между орбитальным электроном и определенным типом кварка, который входит в состав нейтронов ядра атома.

Первая группа в своих экспериментах использовала группу изотопов иттербия, а вторая — атомы кальция. Участники обеих групп выстроили полученные ими результаты в определенном порядке, и данные, полученные при помощи атомов кальция, выстроились в четкую линию, которая полностью подчинялась формулам из существующих теорий. Зато эксперимент с атомами иттербия дал весьма значительные статистические отклонения от линейного закона.

Отметим, что ученым еще очень рано открывать шампанское. С одной стороны, присутствие темного бозона может являться причиной наблюдаемых отклонений. Но, этими же причинами могут быть и другие, такие, как погрешности произведенных измерений и вычислений, тип использованной учеными коррекции, называемой квадратичным полевым сдвигом и т.п.

Вполне естественно, что сейчас еще никто не в состоянии объяснить, почему один из схожих экспериментов вообще не дал никаких результатов, а второй дал достаточно значительные отклонения от теории. Для поиска такого объяснения ученым потребуется больше данных, намного больше, чем было собрано в ходе этих экспериментов и других, связанных с поисками частиц темной материи.

И весьма вероятно, что новый 100-километровый коллайдер, сооружение которого планируется в Женеве, более чувствительное научное оборудование и новые «умные» способы поисков влияния на наш мир фактически не существующих сейчас частиц, помогут нам в будущем найти ответы на вопросы, возникшие в нынешнее время и в недалеком прошлом.

Ученые-физики, возможно, получили первые экспериментальные доказательства существования "темного бозона"

Две независимые группы ученых, принимающие участие в «охоте» на частицы таинственной темной материи, опубликовали недавно результаты своих исследований, которые вступают в достаточно сильное противоречие. Первая из упомянутых групп вообще не получила никаких достоверных результатов в отличие от второй группы. А в результатах, полученных второй группой, возможно, присутствуют первые экспериментальные доказательства существования «темных бозонов», что дает ученым все основания на продолжение поиска и исследований в данном направлении.

Темные бозоны уже некоторое время являются кандидатами на звание частиц темной материи, таинственной субстанции, на долю которой приходится большая часть от всей материи во Вселенной и которая силами своей гравитации удерживает такие громадные космические образования, как галактики и скопления галактик.

К сожалению, обнаружение «темных» бозонов в нашем «светлом» мире столь же сложно, как попытка услышать шепот на большом расстоянии во время шторма. Однако, физикам, вооруженным сверхчувствительными научными приборами, может вполне хватать и уровня «шепота», для них сейчас самым главным является постановка своего эксперимента в идеально подходящих для него условиях.

Две исследовательские группы, о которых речь шла немного выше, одна из Массачусетского технологического института (MIT), другая — из Орхусского университета в Дании, проводили очень схожие эксперименты. Ученые искали очень малые различия в положении электрона атома изотопа, который перескакивал между дискретными энергетическими уровнями. Если бы эти различия были найдены, это могло указать на возможность «толчка» со стороны темного бозона, который возник бы в результате взаимодействия между орбитальным электроном и определенным типом кварка, который входит в состав нейтронов ядра атома.

Первая группа в своих экспериментах использовала группу изотопов иттербия, а вторая — атомы кальция. Участники обеих групп выстроили полученные ими результаты в определенном порядке, и данные, полученные при помощи атомов кальция, выстроились в четкую линию, которая полностью подчинялась формулам из существующих теорий. Зато эксперимент с атомами иттербия дал весьма значительные статистические отклонения от линейного закона.

Отметим, что ученым еще очень рано открывать шампанское. С одной стороны, присутствие темного бозона может являться причиной наблюдаемых отклонений. Но, этими же причинами могут быть и другие, такие, как погрешности произведенных измерений и вычислений, тип использованной учеными коррекции, называемой квадратичным полевым сдвигом и т.п.

Вполне естественно, что сейчас еще никто не в состоянии объяснить, почему один из схожих экспериментов вообще не дал никаких результатов, а второй дал достаточно значительные отклонения от теории. Для поиска такого объяснения ученым потребуется больше данных, намного больше, чем было собрано в ходе этих экспериментов и других, связанных с поисками частиц темной материи.

И весьма вероятно, что новый 100-километровый коллайдер, сооружение которого планируется в Женеве, более чувствительное научное оборудование и новые «умные» способы поисков влияния на наш мир фактически не существующих сейчас частиц, помогут нам в будущем найти ответы на вопросы, возникшие в нынешнее время и в недалеком прошлом.

Linac 4 — новый мощный линейный ускоритель, который будет «кормить» протонами кольцо Большого Адронного Коллайдера

Linac 4 - новый мощный линейный ускоритель, который будет "кормить" протонами кольцо Большого Адронного Коллайдера

Почти после двух лет простоя, связанного с ремонтными работами и очередной модернизацией, Большой Адронный Коллайдер начинает подавать первые признаки своего «возвращения к жизни». Этими признаками стало включение нового мощного линейного ускорителя частиц Linac 4, который к настоящему моменту уже успел пройти ряд начальных тестов. Все эти тесты были направлены на проверку его возможности производить намного более высокоэнергетические лучи разогнанных частиц, чем это мог сделать его предшественник, ускоритель Linac 2, который находился в распоряжении Европейской организации ядерных исследований CERN последние 40 лет.

Напомним нашим читателям, что коллайдер был остановлен в декабре 2018 года с целью его глубокой модернизации, получившей название HL-LHC (High-Luminosity Large Hadron Collider). Когда коллайдер, являющийся самым большим и мощным ускорителем частиц в мире, будет выведен на полную мощность в 2026 году, он станет в семь раз мощнее, чем до последней модернизации. И за счет этого он сможет обеспечить ученым в десять раз большее количество данных, чем собиралось ранее за сопоставимые промежутки времени.

Как уже упоминалось выше, новый линейный ускоритель Linac 4 уже был полностью смонтирован и в течение последних нескольких недель проводились его первые тесты. Этот ускоритель является отправной точкой работы всего коллайдера в целом, ускоренные им протоны подаются в синхротронный ускоритель Proton Synchrotron (PS) Booster и оттуда дальше — в основное кольцо коллайдера. Энергия протонов, которые будут подаваться в ускоритель PS с ускорителя Linac 4, составит 160 МэВ, для сравнения, протоны на выходе ускорителя Linac 2 имели энергию порядка 50 МэВ. Ускоритель PS, используя более высокоэнергетические входящие лучи, сможет разогнать их уже до энергии в 2 ГэВ.

До середины августа этого года ускоритель Linac 4 вырабатывал только низкоэнергетические лучи, используя для их разгона только свою правую половину. 20 августа было произведено первое включение ускорителя, в котором была задействована его полная длина, и на выходе появились первые лучи максимальной мощности. Эти лучи были направлены в специальную ловушку, которая поглощает высокоэнергетические частицы, не производя потоков вторичного излучения.

Дальнейшие испытания ускорителя Linac 4 будут продолжаться еще несколько месяцев. В сентябре разогнанные лучи протонов уже будут посланы в сторону ускорителя PS через специальную линию «накачки». Но эти лучи также закончат свой путь внутри ловушки. Первый же луч, который будет уже подан в ускоритель PS, будет сгенерирован ускорителем Linac 4 7 декабря этого года. А первые лучи начнут циркулировать в кольце Большого Адронного Коллайдера с сентября 2021 года, на четыре месяца позже заранее запланированного срока, что связано с пандемией, вызванной вирусом COVID-19.

Linac 4 - новый мощный линейный ускоритель, который будет "кормить" протонами кольцо Большого Адронного Коллайдера

Почти после двух лет простоя, связанного с ремонтными работами и очередной модернизацией, Большой Адронный Коллайдер начинает подавать первые признаки своего «возвращения к жизни». Этими признаками стало включение нового мощного линейного ускорителя частиц Linac 4, который к настоящему моменту уже успел пройти ряд начальных тестов. Все эти тесты были направлены на проверку его возможности производить намного более высокоэнергетические лучи разогнанных частиц, чем это мог сделать его предшественник, ускоритель Linac 2, который находился в распоряжении Европейской организации ядерных исследований CERN последние 40 лет.

Напомним нашим читателям, что коллайдер был остановлен в декабре 2018 года с целью его глубокой модернизации, получившей название HL-LHC (High-Luminosity Large Hadron Collider). Когда коллайдер, являющийся самым большим и мощным ускорителем частиц в мире, будет выведен на полную мощность в 2026 году, он станет в семь раз мощнее, чем до последней модернизации. И за счет этого он сможет обеспечить ученым в десять раз большее количество данных, чем собиралось ранее за сопоставимые промежутки времени.

Как уже упоминалось выше, новый линейный ускоритель Linac 4 уже был полностью смонтирован и в течение последних нескольких недель проводились его первые тесты. Этот ускоритель является отправной точкой работы всего коллайдера в целом, ускоренные им протоны подаются в синхротронный ускоритель Proton Synchrotron (PS) Booster и оттуда дальше — в основное кольцо коллайдера. Энергия протонов, которые будут подаваться в ускоритель PS с ускорителя Linac 4, составит 160 МэВ, для сравнения, протоны на выходе ускорителя Linac 2 имели энергию порядка 50 МэВ. Ускоритель PS, используя более высокоэнергетические входящие лучи, сможет разогнать их уже до энергии в 2 ГэВ.

До середины августа этого года ускоритель Linac 4 вырабатывал только низкоэнергетические лучи, используя для их разгона только свою правую половину. 20 августа было произведено первое включение ускорителя, в котором была задействована его полная длина, и на выходе появились первые лучи максимальной мощности. Эти лучи были направлены в специальную ловушку, которая поглощает высокоэнергетические частицы, не производя потоков вторичного излучения.

Дальнейшие испытания ускорителя Linac 4 будут продолжаться еще несколько месяцев. В сентябре разогнанные лучи протонов уже будут посланы в сторону ускорителя PS через специальную линию «накачки». Но эти лучи также закончат свой путь внутри ловушки. Первый же луч, который будет уже подан в ускоритель PS, будет сгенерирован ускорителем Linac 4 7 декабря этого года. А первые лучи начнут циркулировать в кольце Большого Адронного Коллайдера с сентября 2021 года, на четыре месяца позже заранее запланированного срока, что связано с пандемией, вызванной вирусом COVID-19.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *