Главная / Наука / Ученым удалось определить верхний предел скорости звука

Ученым удалось определить верхний предел скорости звука

Ученым удалось определить верхний предел скорости звука

Международная группа, в которую входили ученые из университета королевы Марии, Лондон, Кембриджского университета и Института физики высоких давлений, Троицк, Россия, провела ряд исследований, результатом которых стало полученное значение верхнего (максимального) предела скорости распространения звуковых волн. Это значение оказалось равно 36 километрам в секунду, в два раза больше, чем скорость распространения звука в алмазе, самого твердого из всех известных материалов на сегодняшний день.

Волны, такие, как звуковые и электромагнитные, являются колебаниями, которые перемещают заключенную в них энергию из одного места в другое. Звуковые волны могут распространяться в различных средах, в воздухе, в воде и в твердых телах, и в каждой из таких сред скорость распространения звука имеет свое значение. К примеру, чем больше плотность среды, тем быстрее в ней распространяется звук, это объясняет, почему можно узнать о приближении поезда гораздо раньше, прислонив ухо к рельсу железнодорожного пути.

Теория специальной относительности Альберта Эйнштейна устанавливает абсолютный максимальный предел ограничения любой скорости, который равен скорости света в вакууме и составляет около 300 тысяч километров в секунду. Однако, до последнего времени никому не было известно, существует ли какой-то свой верхний предел для скорости распространения звуковых волн.

Проведенные упомянутыми выше учеными предварительные исследования показали, что верхний предел скорости звука может зависеть от значения двух безразмерных фундаментальных констант: постоянной тонкой структуры (fine structure constant) и соотношения массы протона к массе электрона.

Эти два значения, как уже хорошо известно, играют очень большую роль в деле понимания нами природы, строения и «функционирования» Вселенной. Их точно измеренные значения определяют ход ядерных реакций, таких, как распад протонов и процессы термоядерного синтеза, протекающие в недрах звезд. Баланс между этими двумя константами определяет узкую полосу «пригодной для жизни зоны», в которой на поверхности планет могут начать формироваться молекулярные структуры, являющиеся первыми «проблесками» будущей жизни.

Однако, результаты новых исследований указывают на то, что две фундаментальные константы также могут влиять и на другие явления и процессы, имеющие отношение к материаловедению, физике конденсированной материи, где их значения устанавливают некоторые пределы для определенных свойств материала, включая и скорость звука в этих материалах.

Ученые произвели проверку их теории относительно скорости звука на очень широком ряде различных материалов, что позволило подтвердить предположение, что с увеличением массы атома скорость звука в среде этого вещества будет уменьшаться. Это, в свою очередь, подразумевает, что самая большая скорость звука будет в среде твердого атомарного водорода. Однако, такая форма водорода получается только при очень высоких давлениях, выше 1 миллиона атмосфер, что сопоставимо с давлением в ядре газовых гигантских планет, таких, как Юпитер. При таких давлениях водород переходит в твердую металлическую форму, он обладает электрической проводимостью и, согласно некоторым теориям, является сверхпроводником, критическая точка которого находится в диапазоне комнатных температур.

Для расчетов ученые использовали созданную ими квантово-механическую модель металлической атомарной формы водорода. Вычисления, проведенные при помощи этой модели, дали ученым значение скорости звука, очень близкое к фундаментальному пределу, полученному теоретическим путем.

«Распространение звуковых волн в твердых материалах имеет очень важное значение для многих научных областей. К примеру, сейсмологи используют звуковые волны для изучения природы сейсмических явлений и изучения строения земных недр» — рассказывает Крис Пикард (Chris Pickard), профессор материаловедения из Кембриджского университета, — «Звуковые волны представляют большой интерес и для материаловедов, так как их распространение связано с упругими свойствами материалов и реакцией этих материалов на физическое напряжение и деформацию».

Смотрите также

Linac 4 — новый мощный линейный ускоритель, который будет «кормить» протонами кольцо Большого Адронного Коллайдера

Linac 4 - новый мощный линейный ускоритель, который будет "кормить" протонами кольцо Большого Адронного Коллайдера

Почти после двух лет простоя, связанного с ремонтными работами и очередной модернизацией, Большой Адронный Коллайдер начинает подавать первые признаки своего «возвращения к жизни». Этими признаками стало включение нового мощного линейного ускорителя частиц Linac 4, который к настоящему моменту уже успел пройти ряд начальных тестов. Все эти тесты были направлены на проверку его возможности производить намного более высокоэнергетические лучи разогнанных частиц, чем это мог сделать его предшественник, ускоритель Linac 2, который находился в распоряжении Европейской организации ядерных исследований CERN последние 40 лет.

Напомним нашим читателям, что коллайдер был остановлен в декабре 2018 года с целью его глубокой модернизации, получившей название HL-LHC (High-Luminosity Large Hadron Collider). Когда коллайдер, являющийся самым большим и мощным ускорителем частиц в мире, будет выведен на полную мощность в 2026 году, он станет в семь раз мощнее, чем до последней модернизации. И за счет этого он сможет обеспечить ученым в десять раз большее количество данных, чем собиралось ранее за сопоставимые промежутки времени.

Как уже упоминалось выше, новый линейный ускоритель Linac 4 уже был полностью смонтирован и в течение последних нескольких недель проводились его первые тесты. Этот ускоритель является отправной точкой работы всего коллайдера в целом, ускоренные им протоны подаются в синхротронный ускоритель Proton Synchrotron (PS) Booster и оттуда дальше — в основное кольцо коллайдера. Энергия протонов, которые будут подаваться в ускоритель PS с ускорителя Linac 4, составит 160 МэВ, для сравнения, протоны на выходе ускорителя Linac 2 имели энергию порядка 50 МэВ. Ускоритель PS, используя более высокоэнергетические входящие лучи, сможет разогнать их уже до энергии в 2 ГэВ.

До середины августа этого года ускоритель Linac 4 вырабатывал только низкоэнергетические лучи, используя для их разгона только свою правую половину. 20 августа было произведено первое включение ускорителя, в котором была задействована его полная длина, и на выходе появились первые лучи максимальной мощности. Эти лучи были направлены в специальную ловушку, которая поглощает высокоэнергетические частицы, не производя потоков вторичного излучения.

Дальнейшие испытания ускорителя Linac 4 будут продолжаться еще несколько месяцев. В сентябре разогнанные лучи протонов уже будут посланы в сторону ускорителя PS через специальную линию «накачки». Но эти лучи также закончат свой путь внутри ловушки. Первый же луч, который будет уже подан в ускоритель PS, будет сгенерирован ускорителем Linac 4 7 декабря этого года. А первые лучи начнут циркулировать в кольце Большого Адронного Коллайдера с сентября 2021 года, на четыре месяца позже заранее запланированного срока, что связано с пандемией, вызванной вирусом COVID-19.

Linac 4 - новый мощный линейный ускоритель, который будет "кормить" протонами кольцо Большого Адронного Коллайдера

Почти после двух лет простоя, связанного с ремонтными работами и очередной модернизацией, Большой Адронный Коллайдер начинает подавать первые признаки своего «возвращения к жизни». Этими признаками стало включение нового мощного линейного ускорителя частиц Linac 4, который к настоящему моменту уже успел пройти ряд начальных тестов. Все эти тесты были направлены на проверку его возможности производить намного более высокоэнергетические лучи разогнанных частиц, чем это мог сделать его предшественник, ускоритель Linac 2, который находился в распоряжении Европейской организации ядерных исследований CERN последние 40 лет.

Напомним нашим читателям, что коллайдер был остановлен в декабре 2018 года с целью его глубокой модернизации, получившей название HL-LHC (High-Luminosity Large Hadron Collider). Когда коллайдер, являющийся самым большим и мощным ускорителем частиц в мире, будет выведен на полную мощность в 2026 году, он станет в семь раз мощнее, чем до последней модернизации. И за счет этого он сможет обеспечить ученым в десять раз большее количество данных, чем собиралось ранее за сопоставимые промежутки времени.

Как уже упоминалось выше, новый линейный ускоритель Linac 4 уже был полностью смонтирован и в течение последних нескольких недель проводились его первые тесты. Этот ускоритель является отправной точкой работы всего коллайдера в целом, ускоренные им протоны подаются в синхротронный ускоритель Proton Synchrotron (PS) Booster и оттуда дальше — в основное кольцо коллайдера. Энергия протонов, которые будут подаваться в ускоритель PS с ускорителя Linac 4, составит 160 МэВ, для сравнения, протоны на выходе ускорителя Linac 2 имели энергию порядка 50 МэВ. Ускоритель PS, используя более высокоэнергетические входящие лучи, сможет разогнать их уже до энергии в 2 ГэВ.

До середины августа этого года ускоритель Linac 4 вырабатывал только низкоэнергетические лучи, используя для их разгона только свою правую половину. 20 августа было произведено первое включение ускорителя, в котором была задействована его полная длина, и на выходе появились первые лучи максимальной мощности. Эти лучи были направлены в специальную ловушку, которая поглощает высокоэнергетические частицы, не производя потоков вторичного излучения.

Дальнейшие испытания ускорителя Linac 4 будут продолжаться еще несколько месяцев. В сентябре разогнанные лучи протонов уже будут посланы в сторону ускорителя PS через специальную линию «накачки». Но эти лучи также закончат свой путь внутри ловушки. Первый же луч, который будет уже подан в ускоритель PS, будет сгенерирован ускорителем Linac 4 7 декабря этого года. А первые лучи начнут циркулировать в кольце Большого Адронного Коллайдера с сентября 2021 года, на четыре месяца позже заранее запланированного срока, что связано с пандемией, вызванной вирусом COVID-19.

Новая технология позволяет получить аттосекундные импульсы света при помощи обычного промышленного лазера

Новая технология позволяет получить аттосекундные импульсы света при помощи обычного промышленного лазера

Группа исследователей из университета Центральной Флориды разработала новый метод, позволяющий получить импульсы света, длительность которых исчисляется аттосекундами, используя на входе свет, вырабатываемый обычным лазером промышленного назначения. Данное достижение открывает возможность производить фиксацию событий и делать измерения с аттосекундной точностью, что, в свою очередь, позволит ученым из самых разных областей науки изучать сверхбыстрые явления и процессы, такие, как движение электронов в атомах или молекулах в их естественных временных рамках.

«Одной из проблем областей науки, работающих с аттосекундными промежутками времени, заключается в том, что лишь несколько, около десятка лазеров во всем мире способны вырабатывать импульсы такой длительности» — рассказывает Майкл Чини (Michael Chini), один из исследователей, — «В основном это огромные дорогостоящие установки, возможностями которых могут пользоваться исследователи лишь из очень узкого круга лиц, имеющего доступ ко всему этому. Целью нашей работы является создание технологии, которая сделает использование аттосекундных импульсов более широкодоступным за счет использование самых обычных лазеров, стоимость которых не превышает 100 тысяч долларов».

Производство чрезвычайно коротких импульсов света, длительность которых сопоставима с длительностью одного колебания электромагнитной волны этого света, делается обычно при помощи импульсов света, вырабатываемых высококачественным лазером, которые пропускаются сквозь трубы, заполненные благородными газами, такими, как ксенон и аргон. За счет этого и без того уже достаточно короткие импульсы, насчитывающие около сотни циклов колебаний электромагнитной волны, сжимаются во времени.

В предложенный учеными из Флориды новый метод практически не отличается от описанного выше за исключением того, что трубы, через которые проходят импульсы света, заполняются не благородными (инертными) газами, а молекулярными газами, такими, как окись азота, имеющими линейные оптические свойства. Полученный учеными эффект сокращения длительности импульса возникает за счет того, что молекулы газа, имеющие собственную электрическую поляризацию, под воздействием электрического поля импульса света успевают выровняться и превращаются в своего рода линейный резонатор.

При помощи первой экспериментальной установки ученым удалось добиться сокращения длительности исходного импульса, которая варьировалась в диапазоне от 100 до 1000 циклов, до длительности в 1.6 длительности цикла электромагнитной волны. В этом методе ключевыми моментами являются выбор молекулярного газа-наполнителя, частота и длительность исходных импульсов света. При правильно подобранных параметрах, в которых обязательно учитывается инерционность молекул газа, новый метод сможет обеспечить сокращение длительности импульса до времени одного колебания электромагнитной волны исходного импульса света.

Новая технология позволяет получить аттосекундные импульсы света при помощи обычного промышленного лазера

Группа исследователей из университета Центральной Флориды разработала новый метод, позволяющий получить импульсы света, длительность которых исчисляется аттосекундами, используя на входе свет, вырабатываемый обычным лазером промышленного назначения. Данное достижение открывает возможность производить фиксацию событий и делать измерения с аттосекундной точностью, что, в свою очередь, позволит ученым из самых разных областей науки изучать сверхбыстрые явления и процессы, такие, как движение электронов в атомах или молекулах в их естественных временных рамках.

«Одной из проблем областей науки, работающих с аттосекундными промежутками времени, заключается в том, что лишь несколько, около десятка лазеров во всем мире способны вырабатывать импульсы такой длительности» — рассказывает Майкл Чини (Michael Chini), один из исследователей, — «В основном это огромные дорогостоящие установки, возможностями которых могут пользоваться исследователи лишь из очень узкого круга лиц, имеющего доступ ко всему этому. Целью нашей работы является создание технологии, которая сделает использование аттосекундных импульсов более широкодоступным за счет использование самых обычных лазеров, стоимость которых не превышает 100 тысяч долларов».

Производство чрезвычайно коротких импульсов света, длительность которых сопоставима с длительностью одного колебания электромагнитной волны этого света, делается обычно при помощи импульсов света, вырабатываемых высококачественным лазером, которые пропускаются сквозь трубы, заполненные благородными газами, такими, как ксенон и аргон. За счет этого и без того уже достаточно короткие импульсы, насчитывающие около сотни циклов колебаний электромагнитной волны, сжимаются во времени.

В предложенный учеными из Флориды новый метод практически не отличается от описанного выше за исключением того, что трубы, через которые проходят импульсы света, заполняются не благородными (инертными) газами, а молекулярными газами, такими, как окись азота, имеющими линейные оптические свойства. Полученный учеными эффект сокращения длительности импульса возникает за счет того, что молекулы газа, имеющие собственную электрическую поляризацию, под воздействием электрического поля импульса света успевают выровняться и превращаются в своего рода линейный резонатор.

При помощи первой экспериментальной установки ученым удалось добиться сокращения длительности исходного импульса, которая варьировалась в диапазоне от 100 до 1000 циклов, до длительности в 1.6 длительности цикла электромагнитной волны. В этом методе ключевыми моментами являются выбор молекулярного газа-наполнителя, частота и длительность исходных импульсов света. При правильно подобранных параметрах, в которых обязательно учитывается инерционность молекул газа, новый метод сможет обеспечить сокращение длительности импульса до времени одного колебания электромагнитной волны исходного импульса света.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *