Последние новости

Создан источник, способный вырабатывать единичные фотоны при помощи потока единичных электронов

Создан <a href=источник, способный вырабатывать единичные фотоны при помощи потока единичных электронов» alt=»Источник единичных фотонов» title=»Источник единичных фотонов» / />

Исследователи из Кембриджского университета разработали новый метод получения единичных фотонов света путем контроля движения отдельных электронов внутри структуры специально разработанного для этих целей светодиода (light-emitting diode, LED). Этот новый метод отличается простотой, тем не менее, он способен поставлять фотоны света со стабильно повторяющимися характеристиками и параметрами, что очень важно с учетом возможности использования такого источника фотонов в областях квантовых вычислений и коммуникаций.

Единственный фотон (элементарная частица света) может выступать в роли квантового бита и нести квантовую информацию на расстояния, исчисляющиеся сотнями километров. Поэтому источник, способный вырабатывать единичные фотоны полностью контролируемым образом, является неотъемлемым фундаментальным блоком большинства современных квантовых технологий.

Большинство существующих источников единичных фотонов были созданы на базе так называемых квантовых точек на основе полупроводниковых материалов или искусственных дефектов в кристаллической решетке алмаза. Производство таких квантовых точек зависит от многих факторов и является, по сути, совершенно случайным процессом. Таким образом, становится очень трудно контролировать точное местоположение будущего источника и характеристики вырабатываемых им фотонов. И такая случайная природа этих источников максимально затрудняет их интеграцию в состав больших и сложных квантовых систем.

Источник фотонов, созданный учеными из Кембриджа, представляет собой устройство, размещенное на подложке из арсенида галлия. Оно состоит из электронной области и области, где основными носителями электрического заряда являются электронные дырки, а разделяются эти две области узким промежуточным каналом строго определенной ширины.

Ширина разделительного канала специально выбрана такой, что никакой электрон не может самостоятельно перескочить через этот канал в нормальных условиях. Но когда вдоль линии канала запускается акустическая волна определенной формы, она, эта волна, также вызывает волну электрического потенциала, в точке минимума которого находится только один электрон. И эта волна потенциала, подобно ленте конвейера, переносит электроны в области электронных дыр одного за другим. Попавший в эту область электрон объединяется с дырой, а содержащаяся в дыре и электроне лишняя энергия выделяется в виде фотона света.

Помимо того, что при помощи такого источника можно получать фотоны света, следующие строго в необходимый момент времени, этот источник дает возможность управления поляризацией фотонов света, которая напрямую зависит от значения спина электрона, перенесенного волной через канал. Поэтому новое устройство можно будет использовать в качестве кодировщика квантовой информации в «летающих кубитах» фотонов света, что позволит создать широкомасштабные квантовые коммуникационные сети и сети распределенных квантовых вычислений.

Смотрите также

Ученые-физики, возможно, получили первые экспериментальные доказательства существования «темного бозона»

Ученые-физики, возможно, получили первые экспериментальные доказательства существования "темного бозона"

Две независимые группы ученых, принимающие участие в «охоте» на частицы таинственной темной материи, опубликовали недавно результаты своих исследований, которые вступают в достаточно сильное противоречие. Первая из упомянутых групп вообще не получила никаких достоверных результатов в отличие от второй группы. А в результатах, полученных второй группой, возможно, присутствуют первые экспериментальные доказательства существования «темных бозонов», что дает ученым все основания на продолжение поиска и исследований в данном направлении.

Темные бозоны уже некоторое время являются кандидатами на звание частиц темной материи, таинственной субстанции, на долю которой приходится большая часть от всей материи во Вселенной и которая силами своей гравитации удерживает такие громадные космические образования, как галактики и скопления галактик.

К сожалению, обнаружение «темных» бозонов в нашем «светлом» мире столь же сложно, как попытка услышать шепот на большом расстоянии во время шторма. Однако, физикам, вооруженным сверхчувствительными научными приборами, может вполне хватать и уровня «шепота», для них сейчас самым главным является постановка своего эксперимента в идеально подходящих для него условиях.

Две исследовательские группы, о которых речь шла немного выше, одна из Массачусетского технологического института (MIT), другая — из Орхусского университета в Дании, проводили очень схожие эксперименты. Ученые искали очень малые различия в положении электрона атома изотопа, который перескакивал между дискретными энергетическими уровнями. Если бы эти различия были найдены, это могло указать на возможность «толчка» со стороны темного бозона, который возник бы в результате взаимодействия между орбитальным электроном и определенным типом кварка, который входит в состав нейтронов ядра атома.

Первая группа в своих экспериментах использовала группу изотопов иттербия, а вторая — атомы кальция. Участники обеих групп выстроили полученные ими результаты в определенном порядке, и данные, полученные при помощи атомов кальция, выстроились в четкую линию, которая полностью подчинялась формулам из существующих теорий. Зато эксперимент с атомами иттербия дал весьма значительные статистические отклонения от линейного закона.

Отметим, что ученым еще очень рано открывать шампанское. С одной стороны, присутствие темного бозона может являться причиной наблюдаемых отклонений. Но, этими же причинами могут быть и другие, такие, как погрешности произведенных измерений и вычислений, тип использованной учеными коррекции, называемой квадратичным полевым сдвигом и т.п.

Вполне естественно, что сейчас еще никто не в состоянии объяснить, почему один из схожих экспериментов вообще не дал никаких результатов, а второй дал достаточно значительные отклонения от теории. Для поиска такого объяснения ученым потребуется больше данных, намного больше, чем было собрано в ходе этих экспериментов и других, связанных с поисками частиц темной материи.

И весьма вероятно, что новый 100-километровый коллайдер, сооружение которого планируется в Женеве, более чувствительное научное оборудование и новые «умные» способы поисков влияния на наш мир фактически не существующих сейчас частиц, помогут нам в будущем найти ответы на вопросы, возникшие в нынешнее время и в недалеком прошлом.

Ученые-физики, возможно, получили первые экспериментальные доказательства существования "темного бозона"

Две независимые группы ученых, принимающие участие в «охоте» на частицы таинственной темной материи, опубликовали недавно результаты своих исследований, которые вступают в достаточно сильное противоречие. Первая из упомянутых групп вообще не получила никаких достоверных результатов в отличие от второй группы. А в результатах, полученных второй группой, возможно, присутствуют первые экспериментальные доказательства существования «темных бозонов», что дает ученым все основания на продолжение поиска и исследований в данном направлении.

Темные бозоны уже некоторое время являются кандидатами на звание частиц темной материи, таинственной субстанции, на долю которой приходится большая часть от всей материи во Вселенной и которая силами своей гравитации удерживает такие громадные космические образования, как галактики и скопления галактик.

К сожалению, обнаружение «темных» бозонов в нашем «светлом» мире столь же сложно, как попытка услышать шепот на большом расстоянии во время шторма. Однако, физикам, вооруженным сверхчувствительными научными приборами, может вполне хватать и уровня «шепота», для них сейчас самым главным является постановка своего эксперимента в идеально подходящих для него условиях.

Две исследовательские группы, о которых речь шла немного выше, одна из Массачусетского технологического института (MIT), другая — из Орхусского университета в Дании, проводили очень схожие эксперименты. Ученые искали очень малые различия в положении электрона атома изотопа, который перескакивал между дискретными энергетическими уровнями. Если бы эти различия были найдены, это могло указать на возможность «толчка» со стороны темного бозона, который возник бы в результате взаимодействия между орбитальным электроном и определенным типом кварка, который входит в состав нейтронов ядра атома.

Первая группа в своих экспериментах использовала группу изотопов иттербия, а вторая — атомы кальция. Участники обеих групп выстроили полученные ими результаты в определенном порядке, и данные, полученные при помощи атомов кальция, выстроились в четкую линию, которая полностью подчинялась формулам из существующих теорий. Зато эксперимент с атомами иттербия дал весьма значительные статистические отклонения от линейного закона.

Отметим, что ученым еще очень рано открывать шампанское. С одной стороны, присутствие темного бозона может являться причиной наблюдаемых отклонений. Но, этими же причинами могут быть и другие, такие, как погрешности произведенных измерений и вычислений, тип использованной учеными коррекции, называемой квадратичным полевым сдвигом и т.п.

Вполне естественно, что сейчас еще никто не в состоянии объяснить, почему один из схожих экспериментов вообще не дал никаких результатов, а второй дал достаточно значительные отклонения от теории. Для поиска такого объяснения ученым потребуется больше данных, намного больше, чем было собрано в ходе этих экспериментов и других, связанных с поисками частиц темной материи.

И весьма вероятно, что новый 100-километровый коллайдер, сооружение которого планируется в Женеве, более чувствительное научное оборудование и новые «умные» способы поисков влияния на наш мир фактически не существующих сейчас частиц, помогут нам в будущем найти ответы на вопросы, возникшие в нынешнее время и в недалеком прошлом.

Linac 4 — новый мощный линейный ускоритель, который будет «кормить» протонами кольцо Большого Адронного Коллайдера

Linac 4 - новый мощный линейный ускоритель, который будет "кормить" протонами кольцо Большого Адронного Коллайдера

Почти после двух лет простоя, связанного с ремонтными работами и очередной модернизацией, Большой Адронный Коллайдер начинает подавать первые признаки своего «возвращения к жизни». Этими признаками стало включение нового мощного линейного ускорителя частиц Linac 4, который к настоящему моменту уже успел пройти ряд начальных тестов. Все эти тесты были направлены на проверку его возможности производить намного более высокоэнергетические лучи разогнанных частиц, чем это мог сделать его предшественник, ускоритель Linac 2, который находился в распоряжении Европейской организации ядерных исследований CERN последние 40 лет.

Напомним нашим читателям, что коллайдер был остановлен в декабре 2018 года с целью его глубокой модернизации, получившей название HL-LHC (High-Luminosity Large Hadron Collider). Когда коллайдер, являющийся самым большим и мощным ускорителем частиц в мире, будет выведен на полную мощность в 2026 году, он станет в семь раз мощнее, чем до последней модернизации. И за счет этого он сможет обеспечить ученым в десять раз большее количество данных, чем собиралось ранее за сопоставимые промежутки времени.

Как уже упоминалось выше, новый линейный ускоритель Linac 4 уже был полностью смонтирован и в течение последних нескольких недель проводились его первые тесты. Этот ускоритель является отправной точкой работы всего коллайдера в целом, ускоренные им протоны подаются в синхротронный ускоритель Proton Synchrotron (PS) Booster и оттуда дальше — в основное кольцо коллайдера. Энергия протонов, которые будут подаваться в ускоритель PS с ускорителя Linac 4, составит 160 МэВ, для сравнения, протоны на выходе ускорителя Linac 2 имели энергию порядка 50 МэВ. Ускоритель PS, используя более высокоэнергетические входящие лучи, сможет разогнать их уже до энергии в 2 ГэВ.

До середины августа этого года ускоритель Linac 4 вырабатывал только низкоэнергетические лучи, используя для их разгона только свою правую половину. 20 августа было произведено первое включение ускорителя, в котором была задействована его полная длина, и на выходе появились первые лучи максимальной мощности. Эти лучи были направлены в специальную ловушку, которая поглощает высокоэнергетические частицы, не производя потоков вторичного излучения.

Дальнейшие испытания ускорителя Linac 4 будут продолжаться еще несколько месяцев. В сентябре разогнанные лучи протонов уже будут посланы в сторону ускорителя PS через специальную линию «накачки». Но эти лучи также закончат свой путь внутри ловушки. Первый же луч, который будет уже подан в ускоритель PS, будет сгенерирован ускорителем Linac 4 7 декабря этого года. А первые лучи начнут циркулировать в кольце Большого Адронного Коллайдера с сентября 2021 года, на четыре месяца позже заранее запланированного срока, что связано с пандемией, вызванной вирусом COVID-19.

Linac 4 - новый мощный линейный ускоритель, который будет "кормить" протонами кольцо Большого Адронного Коллайдера

Почти после двух лет простоя, связанного с ремонтными работами и очередной модернизацией, Большой Адронный Коллайдер начинает подавать первые признаки своего «возвращения к жизни». Этими признаками стало включение нового мощного линейного ускорителя частиц Linac 4, который к настоящему моменту уже успел пройти ряд начальных тестов. Все эти тесты были направлены на проверку его возможности производить намного более высокоэнергетические лучи разогнанных частиц, чем это мог сделать его предшественник, ускоритель Linac 2, который находился в распоряжении Европейской организации ядерных исследований CERN последние 40 лет.

Напомним нашим читателям, что коллайдер был остановлен в декабре 2018 года с целью его глубокой модернизации, получившей название HL-LHC (High-Luminosity Large Hadron Collider). Когда коллайдер, являющийся самым большим и мощным ускорителем частиц в мире, будет выведен на полную мощность в 2026 году, он станет в семь раз мощнее, чем до последней модернизации. И за счет этого он сможет обеспечить ученым в десять раз большее количество данных, чем собиралось ранее за сопоставимые промежутки времени.

Как уже упоминалось выше, новый линейный ускоритель Linac 4 уже был полностью смонтирован и в течение последних нескольких недель проводились его первые тесты. Этот ускоритель является отправной точкой работы всего коллайдера в целом, ускоренные им протоны подаются в синхротронный ускоритель Proton Synchrotron (PS) Booster и оттуда дальше — в основное кольцо коллайдера. Энергия протонов, которые будут подаваться в ускоритель PS с ускорителя Linac 4, составит 160 МэВ, для сравнения, протоны на выходе ускорителя Linac 2 имели энергию порядка 50 МэВ. Ускоритель PS, используя более высокоэнергетические входящие лучи, сможет разогнать их уже до энергии в 2 ГэВ.

До середины августа этого года ускоритель Linac 4 вырабатывал только низкоэнергетические лучи, используя для их разгона только свою правую половину. 20 августа было произведено первое включение ускорителя, в котором была задействована его полная длина, и на выходе появились первые лучи максимальной мощности. Эти лучи были направлены в специальную ловушку, которая поглощает высокоэнергетические частицы, не производя потоков вторичного излучения.

Дальнейшие испытания ускорителя Linac 4 будут продолжаться еще несколько месяцев. В сентябре разогнанные лучи протонов уже будут посланы в сторону ускорителя PS через специальную линию «накачки». Но эти лучи также закончат свой путь внутри ловушки. Первый же луч, который будет уже подан в ускоритель PS, будет сгенерирован ускорителем Linac 4 7 декабря этого года. А первые лучи начнут циркулировать в кольце Большого Адронного Коллайдера с сентября 2021 года, на четыре месяца позже заранее запланированного срока, что связано с пандемией, вызванной вирусом COVID-19.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *