Главная / Наука / Самая быстрая в мире ультрафиолетовая камера способна снимать полет фотона в режиме реального времени

Самая быстрая в мире ультрафиолетовая камера способна снимать полет фотона в режиме реального времени

Самая быстрая в мире ультрафиолетовая камера способна снимать полет фотона в режиме реального времени

Фотоны, крошечные частицы света, двигаются со столь большой скоростью, что для съемки их полета требуется очень сложное устройство, в котором объединяется сразу множество самых передовых технологий. Не так давно исследователи из канадского Национального исследовательского института (Institut National de la Recherche Scientifique) закончили работу над тем, что смело можно назвать самой быстрой в мире ультрафиолетовой камерой. Эта камера способна снимать сверхбыстрые события, длительность которых измеряется единицами пикосекунд, что достаточно для того, чтобы запечатлеть как фотоны ультрафиолетового света движутся в пространстве в режиме реального времени.

Созданная сверхскоростная ультрафиолетовая камера получила название UV-CUP (compressed ultrafast photography). Технология CUP — это достаточно новый метод съемки, обеспечивающий захват очень быстрых событий со скоростью в триллионы кадров в секунду. Но до последнего времени все CUP-камеры могли работать только в диапазонах видимого или близкого инфракрасного света.

Самая быстрая в мире ультрафиолетовая камера способна снимать полет фотона в режиме реального времени

«Множество явлений происходит за столь короткие промежутки времени и в столь малом объеме пространства, что увидеть их можно только в более коротковолновом диапазоне света» — рассказывает Цзиньян Лян (Jinyang Liang), ведущий исследователь, — «Создание высокоскоростной ультрафиолетовой и, возможно, рентгеновской камер позволит ученым воочию увидеть некоторые явления, а не опираться только на догадки в своих исследованиях».

Для того, чтобы получить возможность производить высокоскоростную съемку в ультрафиолетовом диапазоне, ученые разработали специальный фотокатод и интегрировали его в конструкцию так называемой полосовой камеры, изначально разработанной для измерения временных характеристик сверхбыстрых явлений. Помимо этого, ученым пришлось разработать совершенно новые алгоритмы, которые выполняют превращение данных с камеры в визуальное изображение.

Самая быстрая в мире ультрафиолетовая камера способна снимать полет фотона в режиме реального времени

«Новая камера работает в два этапа» — рассказывает Цзиньян Лян, — «Сначала информация с камеры сжимается и формируется нечто вроде промежуточного снимка, который ничем не напоминает снимки, производимые обычными камерами. И на втором этапе специализированные реконструкционные алгоритмы, работающие в компьютере, превращают данные промежуточного снимка в последовательность кадров очень короткого видео».

Длительность видеороликов, снимаемых камерой UV-CUP, исчисляется наносекундами с дискретностью в единицы пикосекунд. И для того, чтобы обеспечить съемку подобных видеороликов, камера снимает со скоростью 0.5 триллиона кадров в секунду.

Самая быстрая в мире ультрафиолетовая камера способна снимать полет фотона в режиме реального времени

В своей дальнейшей работе исследователи планируют улучшить характеристики камеры UV-CUP, к примеру, альтернативные материалы для фотокатода позволят увеличить быстродействие камеры и ее эффективность. А внедрение технологий искусственного интеллекта в программное обеспечение позволит увеличить скорость реконструкции изображений и их качество.

В настоящее время первый опытный образец камеры UV-CUP уже находится на пути в SOLEIL Synchrotron, одну из французских научно-исследовательских лабораторий, где эта камера будет использоваться для съемок различных физических явлений и процессов. В первую очередь камера будет использована в исследованиях, связанных с генерацией плазмы при помощи лазера, с изучением явления ультрафиолетовой флуоресценции, которое, в свою очередь, может стать основой новых методов медицинской съемки и диагностики различных заболеваний.

Смотрите также

Linac 4 — новый мощный линейный ускоритель, который будет «кормить» протонами кольцо Большого Адронного Коллайдера

Linac 4 - новый мощный линейный ускоритель, который будет "кормить" протонами кольцо Большого Адронного Коллайдера

Почти после двух лет простоя, связанного с ремонтными работами и очередной модернизацией, Большой Адронный Коллайдер начинает подавать первые признаки своего «возвращения к жизни». Этими признаками стало включение нового мощного линейного ускорителя частиц Linac 4, который к настоящему моменту уже успел пройти ряд начальных тестов. Все эти тесты были направлены на проверку его возможности производить намного более высокоэнергетические лучи разогнанных частиц, чем это мог сделать его предшественник, ускоритель Linac 2, который находился в распоряжении Европейской организации ядерных исследований CERN последние 40 лет.

Напомним нашим читателям, что коллайдер был остановлен в декабре 2018 года с целью его глубокой модернизации, получившей название HL-LHC (High-Luminosity Large Hadron Collider). Когда коллайдер, являющийся самым большим и мощным ускорителем частиц в мире, будет выведен на полную мощность в 2026 году, он станет в семь раз мощнее, чем до последней модернизации. И за счет этого он сможет обеспечить ученым в десять раз большее количество данных, чем собиралось ранее за сопоставимые промежутки времени.

Как уже упоминалось выше, новый линейный ускоритель Linac 4 уже был полностью смонтирован и в течение последних нескольких недель проводились его первые тесты. Этот ускоритель является отправной точкой работы всего коллайдера в целом, ускоренные им протоны подаются в синхротронный ускоритель Proton Synchrotron (PS) Booster и оттуда дальше — в основное кольцо коллайдера. Энергия протонов, которые будут подаваться в ускоритель PS с ускорителя Linac 4, составит 160 МэВ, для сравнения, протоны на выходе ускорителя Linac 2 имели энергию порядка 50 МэВ. Ускоритель PS, используя более высокоэнергетические входящие лучи, сможет разогнать их уже до энергии в 2 ГэВ.

До середины августа этого года ускоритель Linac 4 вырабатывал только низкоэнергетические лучи, используя для их разгона только свою правую половину. 20 августа было произведено первое включение ускорителя, в котором была задействована его полная длина, и на выходе появились первые лучи максимальной мощности. Эти лучи были направлены в специальную ловушку, которая поглощает высокоэнергетические частицы, не производя потоков вторичного излучения.

Дальнейшие испытания ускорителя Linac 4 будут продолжаться еще несколько месяцев. В сентябре разогнанные лучи протонов уже будут посланы в сторону ускорителя PS через специальную линию «накачки». Но эти лучи также закончат свой путь внутри ловушки. Первый же луч, который будет уже подан в ускоритель PS, будет сгенерирован ускорителем Linac 4 7 декабря этого года. А первые лучи начнут циркулировать в кольце Большого Адронного Коллайдера с сентября 2021 года, на четыре месяца позже заранее запланированного срока, что связано с пандемией, вызванной вирусом COVID-19.

Linac 4 - новый мощный линейный ускоритель, который будет "кормить" протонами кольцо Большого Адронного Коллайдера

Почти после двух лет простоя, связанного с ремонтными работами и очередной модернизацией, Большой Адронный Коллайдер начинает подавать первые признаки своего «возвращения к жизни». Этими признаками стало включение нового мощного линейного ускорителя частиц Linac 4, который к настоящему моменту уже успел пройти ряд начальных тестов. Все эти тесты были направлены на проверку его возможности производить намного более высокоэнергетические лучи разогнанных частиц, чем это мог сделать его предшественник, ускоритель Linac 2, который находился в распоряжении Европейской организации ядерных исследований CERN последние 40 лет.

Напомним нашим читателям, что коллайдер был остановлен в декабре 2018 года с целью его глубокой модернизации, получившей название HL-LHC (High-Luminosity Large Hadron Collider). Когда коллайдер, являющийся самым большим и мощным ускорителем частиц в мире, будет выведен на полную мощность в 2026 году, он станет в семь раз мощнее, чем до последней модернизации. И за счет этого он сможет обеспечить ученым в десять раз большее количество данных, чем собиралось ранее за сопоставимые промежутки времени.

Как уже упоминалось выше, новый линейный ускоритель Linac 4 уже был полностью смонтирован и в течение последних нескольких недель проводились его первые тесты. Этот ускоритель является отправной точкой работы всего коллайдера в целом, ускоренные им протоны подаются в синхротронный ускоритель Proton Synchrotron (PS) Booster и оттуда дальше — в основное кольцо коллайдера. Энергия протонов, которые будут подаваться в ускоритель PS с ускорителя Linac 4, составит 160 МэВ, для сравнения, протоны на выходе ускорителя Linac 2 имели энергию порядка 50 МэВ. Ускоритель PS, используя более высокоэнергетические входящие лучи, сможет разогнать их уже до энергии в 2 ГэВ.

До середины августа этого года ускоритель Linac 4 вырабатывал только низкоэнергетические лучи, используя для их разгона только свою правую половину. 20 августа было произведено первое включение ускорителя, в котором была задействована его полная длина, и на выходе появились первые лучи максимальной мощности. Эти лучи были направлены в специальную ловушку, которая поглощает высокоэнергетические частицы, не производя потоков вторичного излучения.

Дальнейшие испытания ускорителя Linac 4 будут продолжаться еще несколько месяцев. В сентябре разогнанные лучи протонов уже будут посланы в сторону ускорителя PS через специальную линию «накачки». Но эти лучи также закончат свой путь внутри ловушки. Первый же луч, который будет уже подан в ускоритель PS, будет сгенерирован ускорителем Linac 4 7 декабря этого года. А первые лучи начнут циркулировать в кольце Большого Адронного Коллайдера с сентября 2021 года, на четыре месяца позже заранее запланированного срока, что связано с пандемией, вызванной вирусом COVID-19.

Новая технология позволяет получить аттосекундные импульсы света при помощи обычного промышленного лазера

Новая технология позволяет получить аттосекундные импульсы света при помощи обычного промышленного лазера

Группа исследователей из университета Центральной Флориды разработала новый метод, позволяющий получить импульсы света, длительность которых исчисляется аттосекундами, используя на входе свет, вырабатываемый обычным лазером промышленного назначения. Данное достижение открывает возможность производить фиксацию событий и делать измерения с аттосекундной точностью, что, в свою очередь, позволит ученым из самых разных областей науки изучать сверхбыстрые явления и процессы, такие, как движение электронов в атомах или молекулах в их естественных временных рамках.

«Одной из проблем областей науки, работающих с аттосекундными промежутками времени, заключается в том, что лишь несколько, около десятка лазеров во всем мире способны вырабатывать импульсы такой длительности» — рассказывает Майкл Чини (Michael Chini), один из исследователей, — «В основном это огромные дорогостоящие установки, возможностями которых могут пользоваться исследователи лишь из очень узкого круга лиц, имеющего доступ ко всему этому. Целью нашей работы является создание технологии, которая сделает использование аттосекундных импульсов более широкодоступным за счет использование самых обычных лазеров, стоимость которых не превышает 100 тысяч долларов».

Производство чрезвычайно коротких импульсов света, длительность которых сопоставима с длительностью одного колебания электромагнитной волны этого света, делается обычно при помощи импульсов света, вырабатываемых высококачественным лазером, которые пропускаются сквозь трубы, заполненные благородными газами, такими, как ксенон и аргон. За счет этого и без того уже достаточно короткие импульсы, насчитывающие около сотни циклов колебаний электромагнитной волны, сжимаются во времени.

В предложенный учеными из Флориды новый метод практически не отличается от описанного выше за исключением того, что трубы, через которые проходят импульсы света, заполняются не благородными (инертными) газами, а молекулярными газами, такими, как окись азота, имеющими линейные оптические свойства. Полученный учеными эффект сокращения длительности импульса возникает за счет того, что молекулы газа, имеющие собственную электрическую поляризацию, под воздействием электрического поля импульса света успевают выровняться и превращаются в своего рода линейный резонатор.

При помощи первой экспериментальной установки ученым удалось добиться сокращения длительности исходного импульса, которая варьировалась в диапазоне от 100 до 1000 циклов, до длительности в 1.6 длительности цикла электромагнитной волны. В этом методе ключевыми моментами являются выбор молекулярного газа-наполнителя, частота и длительность исходных импульсов света. При правильно подобранных параметрах, в которых обязательно учитывается инерционность молекул газа, новый метод сможет обеспечить сокращение длительности импульса до времени одного колебания электромагнитной волны исходного импульса света.

Новая технология позволяет получить аттосекундные импульсы света при помощи обычного промышленного лазера

Группа исследователей из университета Центральной Флориды разработала новый метод, позволяющий получить импульсы света, длительность которых исчисляется аттосекундами, используя на входе свет, вырабатываемый обычным лазером промышленного назначения. Данное достижение открывает возможность производить фиксацию событий и делать измерения с аттосекундной точностью, что, в свою очередь, позволит ученым из самых разных областей науки изучать сверхбыстрые явления и процессы, такие, как движение электронов в атомах или молекулах в их естественных временных рамках.

«Одной из проблем областей науки, работающих с аттосекундными промежутками времени, заключается в том, что лишь несколько, около десятка лазеров во всем мире способны вырабатывать импульсы такой длительности» — рассказывает Майкл Чини (Michael Chini), один из исследователей, — «В основном это огромные дорогостоящие установки, возможностями которых могут пользоваться исследователи лишь из очень узкого круга лиц, имеющего доступ ко всему этому. Целью нашей работы является создание технологии, которая сделает использование аттосекундных импульсов более широкодоступным за счет использование самых обычных лазеров, стоимость которых не превышает 100 тысяч долларов».

Производство чрезвычайно коротких импульсов света, длительность которых сопоставима с длительностью одного колебания электромагнитной волны этого света, делается обычно при помощи импульсов света, вырабатываемых высококачественным лазером, которые пропускаются сквозь трубы, заполненные благородными газами, такими, как ксенон и аргон. За счет этого и без того уже достаточно короткие импульсы, насчитывающие около сотни циклов колебаний электромагнитной волны, сжимаются во времени.

В предложенный учеными из Флориды новый метод практически не отличается от описанного выше за исключением того, что трубы, через которые проходят импульсы света, заполняются не благородными (инертными) газами, а молекулярными газами, такими, как окись азота, имеющими линейные оптические свойства. Полученный учеными эффект сокращения длительности импульса возникает за счет того, что молекулы газа, имеющие собственную электрическую поляризацию, под воздействием электрического поля импульса света успевают выровняться и превращаются в своего рода линейный резонатор.

При помощи первой экспериментальной установки ученым удалось добиться сокращения длительности исходного импульса, которая варьировалась в диапазоне от 100 до 1000 циклов, до длительности в 1.6 длительности цикла электромагнитной волны. В этом методе ключевыми моментами являются выбор молекулярного газа-наполнителя, частота и длительность исходных импульсов света. При правильно подобранных параметрах, в которых обязательно учитывается инерционность молекул газа, новый метод сможет обеспечить сокращение длительности импульса до времени одного колебания электромагнитной волны исходного импульса света.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *