Последние новости
Главная / Наука / Полсотни нобелевских лауреатов назвали главные угрозы человечеству

Полсотни нобелевских лауреатов назвали главные угрозы человечеству

Британский Times Higher Education провел опрос 50 лауреатов Нобелевской премии по физике, химии, физиологии (или медицине) и экономике. Журнал, в частности, поинтересовался мнением ученых о глобальных угрозах для человечества и возможной конкуренции со стороны искусственного интеллекта.

Главной опасностью для человечества 34 процента ученых назвали рост популяции и деградацию окружающей среды (глобальное потепление), 23 процента — ядерную войну, 8 процентов — инфекционные заболевания и лекарственную резистентность.

На вопрос «Приведет ли внедрение искусственного интеллекта и роботов к снижению потребности в исследователях-людях?» половина ответили «маловероятно», по 24 процента — «определенно нет» и «возможно», 2 процента (один человек) — «определенно да». «У роботов нет воображения», — сказал один из ученых.

Материалы по теме00:02 — 8 января

Повелитель черных дырКак Стивен Хокинг прожил 75 лет

С нобелевскими лауреатами не согласны американский бизнесмен Илон Маск и британский ученый Стивен Хокинг (не являются нобелевскими лауреатами), которые неоднократно называли искусственный интеллект одной из угроз человечеству.

С 1901 года лауреатами Нобелевской премии по физике, химии, физиологии (или медицине) и экономике стали менее 700 человек, сегодня на планете проживают 235 таких ученых.

lenta.ru

видеорегистраторы

Смотрите также

Ученым впервые удалось добиться взаимодействия между двумя пространственно-временными кристаллами

Ученым впервые удалось добиться взаимодействия между двумя пространственно-временными кристаллами

Ученым, впервые в истории науки, удалось засвидетельствовать взаимодействие между двумя материальными образованиями, которые находятся в особом квантовом состоянии, известном под названием «пространственно-временные кристаллы». Результаты данного достижения могут стать основой новых технологий обработки квантовой информации из-за того, что структура пространственно-временных кристаллов остается стабильной и сохраняет свою последовательность, невзирая на изменяющиеся условия окружающей среды. И именно эта стабильность сможет обеспечить надежную работу процессоров мощных квантовых компьютеров, состоящих из сотен и тысяч квантовых битов, кубитов.

Напомним нашим читателям, что пространственно-временные кристаллы практически не имеют ничего общего с обычными кристаллами, которые состоят из соединенных друг с другом атомов, формирующих повторяющуюся в пространстве решетчатую структуру. Теоретическую возможность существования пространственно-временных кристаллов обосновал в 2012 году Нобелевский лауреат Фрэнк Вильчек (Frank Wilczek), а уже в 2016 году ученым удалось создать и наблюдать поведение частиц первого реального пространственно-временного кристалла.

Частицы, из которых состоят пространственно-временные кристаллы, находятся в постоянном движении, они колеблются, вращаются и перемещаются в разных направлениях. Но, несмотря на такое сложное движение, через строго определенные промежутки времени структура всего кристалла возвращается к своей исходной форме, невзирая на любые внешние воздействия.

Международная группа ученых из университетов Ланкастера и Йельского университета, Великобритания, университета Аальто, Хельсинки, создала пространственно-временные кристаллы в среде гелия-3, редкого изотопа гелия, в ядре которого не хватает одного нейтрона. Сверхтекучий гелий-3 был охлажден до температуры в одну десятитысячную градуса выше точки абсолютного нуля (0.0001K или -273.15 градуса Цельсия). И в получившейся после такого охлаждения сверхтекучей жидкости (супержидкости) ученым удалось индуцировать два кристалла, которые слегка «затрагивали» друг друга.

Заглянув в объем супержидкости при помощи специализированного оборудования, ученые увидели, что два кристалла взаимодействуют друг с другом. Частицы одного кристалла, не нарушая его структуры, постоянно перетекают в другой пространственно-временной кристалл и через некоторое время возвращаются назад в процессе, известном под названием эффекта Джозефсона (Josephson effect).

И в заключение следует отметить, что у пространственно-временных кристаллов имеется очень большой потенциал для их практического применения. При их помощи могут быть созданы новые атомные часы, имеющие точность, близкую к максимально возможному теоретическому пределу, на основе таких кристаллов могут быть созданы высокоточные гироскопы и масса других вещей, где пространственно-временные кристаллы будут выступать высокостабильными источниками эталонных сигналов.

Ученым впервые удалось добиться взаимодействия между двумя пространственно-временными кристаллами

Ученым, впервые в истории науки, удалось засвидетельствовать взаимодействие между двумя материальными образованиями, которые находятся в особом квантовом состоянии, известном под названием «пространственно-временные кристаллы». Результаты данного достижения могут стать основой новых технологий обработки квантовой информации из-за того, что структура пространственно-временных кристаллов остается стабильной и сохраняет свою последовательность, невзирая на изменяющиеся условия окружающей среды. И именно эта стабильность сможет обеспечить надежную работу процессоров мощных квантовых компьютеров, состоящих из сотен и тысяч квантовых битов, кубитов.

Напомним нашим читателям, что пространственно-временные кристаллы практически не имеют ничего общего с обычными кристаллами, которые состоят из соединенных друг с другом атомов, формирующих повторяющуюся в пространстве решетчатую структуру. Теоретическую возможность существования пространственно-временных кристаллов обосновал в 2012 году Нобелевский лауреат Фрэнк Вильчек (Frank Wilczek), а уже в 2016 году ученым удалось создать и наблюдать поведение частиц первого реального пространственно-временного кристалла.

Частицы, из которых состоят пространственно-временные кристаллы, находятся в постоянном движении, они колеблются, вращаются и перемещаются в разных направлениях. Но, несмотря на такое сложное движение, через строго определенные промежутки времени структура всего кристалла возвращается к своей исходной форме, невзирая на любые внешние воздействия.

Международная группа ученых из университетов Ланкастера и Йельского университета, Великобритания, университета Аальто, Хельсинки, создала пространственно-временные кристаллы в среде гелия-3, редкого изотопа гелия, в ядре которого не хватает одного нейтрона. Сверхтекучий гелий-3 был охлажден до температуры в одну десятитысячную градуса выше точки абсолютного нуля (0.0001K или -273.15 градуса Цельсия). И в получившейся после такого охлаждения сверхтекучей жидкости (супержидкости) ученым удалось индуцировать два кристалла, которые слегка «затрагивали» друг друга.

Заглянув в объем супержидкости при помощи специализированного оборудования, ученые увидели, что два кристалла взаимодействуют друг с другом. Частицы одного кристалла, не нарушая его структуры, постоянно перетекают в другой пространственно-временной кристалл и через некоторое время возвращаются назад в процессе, известном под названием эффекта Джозефсона (Josephson effect).

И в заключение следует отметить, что у пространственно-временных кристаллов имеется очень большой потенциал для их практического применения. При их помощи могут быть созданы новые атомные часы, имеющие точность, близкую к максимально возможному теоретическому пределу, на основе таких кристаллов могут быть созданы высокоточные гироскопы и масса других вещей, где пространственно-временные кристаллы будут выступать высокостабильными источниками эталонных сигналов.

Пространственно-временные волновые пакеты: Свет нового класса лазера бросает вызов фундаментальным законам физики

Пространственно-временные волновые пакеты: Свет нового класса лазера бросает вызов фундаментальным законам физики

Ученым удалось создать лазер совершенно нового класса, луч света которого не подчиняется некоторым фундаментальным законам физики и оптики. Лучи света этого лазера, которые ученые окрестили термином «пространственно-временные волновые пакеты» (spacetime wave packets), подчиняются каким-то особым правилам отражения и преломления. И эти новые правила можно будет в будущем поставить на службу людям в области коммуникационных технологий в первую очередь.

Из школьного учебника физики нам известно, что свет движется с различной скоростью в среде различных материалов. И чем больше плотность материала, через который проходит свет, тем с меньшей скоростью он, свет, движется в объеме этого материала. Наглядной демонстрацией этого принципа, который называется законом Снеллиуса, является ложка, опущенная в стакан с водой. За счет разницы между плотностями воздуха и воды кажется, что ложка «сломана» на границе контакта воздуха и воды.

Однако, лучи света нового лазера полностью игнорируют закон Снеллиуса. Более того, эти лучи не подчиняются второму из фундаментальных законов — принципу Ферма, который определяет, что свет всегда распространяется по самому короткому пути.

«Лучи пространственно-временных волновых пакетов могут быть настроены так, что они не изменят свою скорость или даже аномально ускорятся, проходя из менее плотного материала в более плотный материал» — пишут исследователи — «При помощи этого явления можно будет сделать так, что два импульса, излученные в разные моменты времени, окажутся в одной точке пространства одновременно, или так, что излученные в один момент импульсы окажутся в двух различных точках пространства одновременно».

Такие возможности, которые открывает нам использование пространственно-временных волновых пакетов, может иметь очень серьезные последствия для телекоммуникационной области. Ученые приводят в качестве примера синхронную отсылку сообщений с самолета на две субмарины, находящиеся на одной глубине, но на разном удалении от самолета.

С первого взгляда может показаться, что технология пространственно-временных волновых пакетов противоречит ряду ключевых законов классической физики, но ученые утверждают, что на самом деле все происходит в полном соответствии со Специальной теорией относительности. Ведь данная технология не оперирует собственно колебаниями электромагнитных волн фотонов света, а контролирует скорость, с которой движутся максимумы колебаний волн света. И делается это при помощи устройства, называемого пространственным оптическим модулятором, который реорганизовывает энергию каждого импульса света, «переплетая» его некоторые свойства в пространстве и времени.

«Пространственно-временное преломление света ломает многие из известных нам законов и принципов» — пишут исследователи, — «Но в качестве компенсации этого оно, это явление, дает нам массу новых возможностей для управления распространением света и некоторых его свойств».

Пространственно-временные волновые пакеты: Свет нового класса лазера бросает вызов фундаментальным законам физики

Ученым удалось создать лазер совершенно нового класса, луч света которого не подчиняется некоторым фундаментальным законам физики и оптики. Лучи света этого лазера, которые ученые окрестили термином «пространственно-временные волновые пакеты» (spacetime wave packets), подчиняются каким-то особым правилам отражения и преломления. И эти новые правила можно будет в будущем поставить на службу людям в области коммуникационных технологий в первую очередь.

Из школьного учебника физики нам известно, что свет движется с различной скоростью в среде различных материалов. И чем больше плотность материала, через который проходит свет, тем с меньшей скоростью он, свет, движется в объеме этого материала. Наглядной демонстрацией этого принципа, который называется законом Снеллиуса, является ложка, опущенная в стакан с водой. За счет разницы между плотностями воздуха и воды кажется, что ложка «сломана» на границе контакта воздуха и воды.

Однако, лучи света нового лазера полностью игнорируют закон Снеллиуса. Более того, эти лучи не подчиняются второму из фундаментальных законов — принципу Ферма, который определяет, что свет всегда распространяется по самому короткому пути.

«Лучи пространственно-временных волновых пакетов могут быть настроены так, что они не изменят свою скорость или даже аномально ускорятся, проходя из менее плотного материала в более плотный материал» — пишут исследователи — «При помощи этого явления можно будет сделать так, что два импульса, излученные в разные моменты времени, окажутся в одной точке пространства одновременно, или так, что излученные в один момент импульсы окажутся в двух различных точках пространства одновременно».

Такие возможности, которые открывает нам использование пространственно-временных волновых пакетов, может иметь очень серьезные последствия для телекоммуникационной области. Ученые приводят в качестве примера синхронную отсылку сообщений с самолета на две субмарины, находящиеся на одной глубине, но на разном удалении от самолета.

С первого взгляда может показаться, что технология пространственно-временных волновых пакетов противоречит ряду ключевых законов классической физики, но ученые утверждают, что на самом деле все происходит в полном соответствии со Специальной теорией относительности. Ведь данная технология не оперирует собственно колебаниями электромагнитных волн фотонов света, а контролирует скорость, с которой движутся максимумы колебаний волн света. И делается это при помощи устройства, называемого пространственным оптическим модулятором, который реорганизовывает энергию каждого импульса света, «переплетая» его некоторые свойства в пространстве и времени.

«Пространственно-временное преломление света ломает многие из известных нам законов и принципов» — пишут исследователи, — «Но в качестве компенсации этого оно, это явление, дает нам массу новых возможностей для управления распространением света и некоторых его свойств».

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *