Последние новости
Главная / Наука / Машины-монстры: Самый мощный в мире синий лазер от компании Panasonic

Машины-монстры: Самый мощный в мире синий лазер от компании Panasonic

Машины-монстры: Самый мощный в мире синий лазер от компании Panasonic

Не так давно на демонстрации, проведенной в Осаке, Япония, представители компании Panasonic показали всему миру созданный ими самый яркий и самый мощный в мире синий лазер. Это достижение стало возможным благодаря использованию комбинации нескольких технологий — технологии прямых диодных лазеров (direct diode laser, DDL) и технологии объединения лучей с разной длиной волны (wavelength beam combining, WBC), благодаря которой на выходе устройства получается один мощный луч лазерного света синего цвета. Более того, данная технология позволяет масштабирование любого уровня и путем увеличения количества источников лазерного света можно увеличить мощность выходного луча до немыслимых значений.

DDL-лазер представляет собой полупроводниковую систему, которая излучает сильно фокусированный луч света в заданном направлении. В отличие от других технологий твердотельных лазеров, технология DDL позволяет создавать более компактные и более эффективные устройства, позволяющие получить больший выход при меньших затратах потребляемой энергии, и это является ключевым моментом, благодаря которому такие лазеры широко используются в технологиях лазерной сварки, резки и т.п.

Работы в данном направлении ведутся компанией Panasonic уже достаточно давно. С 2013 года компания сотрудничала с компанией TeraDiode (TDI), которая занималась разработкой WBC-технологий, а в 2017 году компания Panasonic просто поглотила компанию TDI, и это позволило в достаточно короткие сроки разработать эффективную технологию уменьшения длины волны лазерного света.

Машины-монстры: Самый мощный в мире синий лазер от компании Panasonic

Новый лазер компании Panasonic работает в достаточно узком диапазоне от 400 до 450 нанометров, хотя обычные синие лазеры перекрывают более широкий диапазон — от 360 до 480 нанометров. А в выходном луче устройства сконцентрирована энергия света, излучаемого сотней DDL-лазеров. При этом, лазерные диоды были изготовлены в виде матриц, расположенных на отдельных полупроводниковых кристаллах, на которых также находится вся необходимая управляющая электроника.

Новый синий лазер, по мнению представителей компании Panasonic, является идеальным устройством для создания технологии микрообработки таких сложных материалов, как медь, серебро, золото и др., имеющих высокую теплопроводность. Теплопроводность этих материалов требует использования для их обработки такого количества энергии света, которое неспособны поставить не только лазерные системы, генерирующие менее энергетическое и более длинноволновое излучение, но и обычные системы синих лазеров, отстающие от новой системы минимум на два порядка по показателю выходной мощности.

Машины-монстрывсе о самых исключительных машинах, механизмах и устройствах в мире, от громадных средств уничтожения себе подобных до крошечных точнейших устройств, механизмов и всего того, что находится в промежутке между ними.

Смотрите также

Ученым впервые удалось добиться взаимодействия между двумя пространственно-временными кристаллами

Ученым впервые удалось добиться взаимодействия между двумя пространственно-временными кристаллами

Ученым, впервые в истории науки, удалось засвидетельствовать взаимодействие между двумя материальными образованиями, которые находятся в особом квантовом состоянии, известном под названием «пространственно-временные кристаллы». Результаты данного достижения могут стать основой новых технологий обработки квантовой информации из-за того, что структура пространственно-временных кристаллов остается стабильной и сохраняет свою последовательность, невзирая на изменяющиеся условия окружающей среды. И именно эта стабильность сможет обеспечить надежную работу процессоров мощных квантовых компьютеров, состоящих из сотен и тысяч квантовых битов, кубитов.

Напомним нашим читателям, что пространственно-временные кристаллы практически не имеют ничего общего с обычными кристаллами, которые состоят из соединенных друг с другом атомов, формирующих повторяющуюся в пространстве решетчатую структуру. Теоретическую возможность существования пространственно-временных кристаллов обосновал в 2012 году Нобелевский лауреат Фрэнк Вильчек (Frank Wilczek), а уже в 2016 году ученым удалось создать и наблюдать поведение частиц первого реального пространственно-временного кристалла.

Частицы, из которых состоят пространственно-временные кристаллы, находятся в постоянном движении, они колеблются, вращаются и перемещаются в разных направлениях. Но, несмотря на такое сложное движение, через строго определенные промежутки времени структура всего кристалла возвращается к своей исходной форме, невзирая на любые внешние воздействия.

Международная группа ученых из университетов Ланкастера и Йельского университета, Великобритания, университета Аальто, Хельсинки, создала пространственно-временные кристаллы в среде гелия-3, редкого изотопа гелия, в ядре которого не хватает одного нейтрона. Сверхтекучий гелий-3 был охлажден до температуры в одну десятитысячную градуса выше точки абсолютного нуля (0.0001K или -273.15 градуса Цельсия). И в получившейся после такого охлаждения сверхтекучей жидкости (супержидкости) ученым удалось индуцировать два кристалла, которые слегка «затрагивали» друг друга.

Заглянув в объем супержидкости при помощи специализированного оборудования, ученые увидели, что два кристалла взаимодействуют друг с другом. Частицы одного кристалла, не нарушая его структуры, постоянно перетекают в другой пространственно-временной кристалл и через некоторое время возвращаются назад в процессе, известном под названием эффекта Джозефсона (Josephson effect).

И в заключение следует отметить, что у пространственно-временных кристаллов имеется очень большой потенциал для их практического применения. При их помощи могут быть созданы новые атомные часы, имеющие точность, близкую к максимально возможному теоретическому пределу, на основе таких кристаллов могут быть созданы высокоточные гироскопы и масса других вещей, где пространственно-временные кристаллы будут выступать высокостабильными источниками эталонных сигналов.

Ученым впервые удалось добиться взаимодействия между двумя пространственно-временными кристаллами

Ученым, впервые в истории науки, удалось засвидетельствовать взаимодействие между двумя материальными образованиями, которые находятся в особом квантовом состоянии, известном под названием «пространственно-временные кристаллы». Результаты данного достижения могут стать основой новых технологий обработки квантовой информации из-за того, что структура пространственно-временных кристаллов остается стабильной и сохраняет свою последовательность, невзирая на изменяющиеся условия окружающей среды. И именно эта стабильность сможет обеспечить надежную работу процессоров мощных квантовых компьютеров, состоящих из сотен и тысяч квантовых битов, кубитов.

Напомним нашим читателям, что пространственно-временные кристаллы практически не имеют ничего общего с обычными кристаллами, которые состоят из соединенных друг с другом атомов, формирующих повторяющуюся в пространстве решетчатую структуру. Теоретическую возможность существования пространственно-временных кристаллов обосновал в 2012 году Нобелевский лауреат Фрэнк Вильчек (Frank Wilczek), а уже в 2016 году ученым удалось создать и наблюдать поведение частиц первого реального пространственно-временного кристалла.

Частицы, из которых состоят пространственно-временные кристаллы, находятся в постоянном движении, они колеблются, вращаются и перемещаются в разных направлениях. Но, несмотря на такое сложное движение, через строго определенные промежутки времени структура всего кристалла возвращается к своей исходной форме, невзирая на любые внешние воздействия.

Международная группа ученых из университетов Ланкастера и Йельского университета, Великобритания, университета Аальто, Хельсинки, создала пространственно-временные кристаллы в среде гелия-3, редкого изотопа гелия, в ядре которого не хватает одного нейтрона. Сверхтекучий гелий-3 был охлажден до температуры в одну десятитысячную градуса выше точки абсолютного нуля (0.0001K или -273.15 градуса Цельсия). И в получившейся после такого охлаждения сверхтекучей жидкости (супержидкости) ученым удалось индуцировать два кристалла, которые слегка «затрагивали» друг друга.

Заглянув в объем супержидкости при помощи специализированного оборудования, ученые увидели, что два кристалла взаимодействуют друг с другом. Частицы одного кристалла, не нарушая его структуры, постоянно перетекают в другой пространственно-временной кристалл и через некоторое время возвращаются назад в процессе, известном под названием эффекта Джозефсона (Josephson effect).

И в заключение следует отметить, что у пространственно-временных кристаллов имеется очень большой потенциал для их практического применения. При их помощи могут быть созданы новые атомные часы, имеющие точность, близкую к максимально возможному теоретическому пределу, на основе таких кристаллов могут быть созданы высокоточные гироскопы и масса других вещей, где пространственно-временные кристаллы будут выступать высокостабильными источниками эталонных сигналов.

Пространственно-временные волновые пакеты: Свет нового класса лазера бросает вызов фундаментальным законам физики

Пространственно-временные волновые пакеты: Свет нового класса лазера бросает вызов фундаментальным законам физики

Ученым удалось создать лазер совершенно нового класса, луч света которого не подчиняется некоторым фундаментальным законам физики и оптики. Лучи света этого лазера, которые ученые окрестили термином «пространственно-временные волновые пакеты» (spacetime wave packets), подчиняются каким-то особым правилам отражения и преломления. И эти новые правила можно будет в будущем поставить на службу людям в области коммуникационных технологий в первую очередь.

Из школьного учебника физики нам известно, что свет движется с различной скоростью в среде различных материалов. И чем больше плотность материала, через который проходит свет, тем с меньшей скоростью он, свет, движется в объеме этого материала. Наглядной демонстрацией этого принципа, который называется законом Снеллиуса, является ложка, опущенная в стакан с водой. За счет разницы между плотностями воздуха и воды кажется, что ложка «сломана» на границе контакта воздуха и воды.

Однако, лучи света нового лазера полностью игнорируют закон Снеллиуса. Более того, эти лучи не подчиняются второму из фундаментальных законов — принципу Ферма, который определяет, что свет всегда распространяется по самому короткому пути.

«Лучи пространственно-временных волновых пакетов могут быть настроены так, что они не изменят свою скорость или даже аномально ускорятся, проходя из менее плотного материала в более плотный материал» — пишут исследователи — «При помощи этого явления можно будет сделать так, что два импульса, излученные в разные моменты времени, окажутся в одной точке пространства одновременно, или так, что излученные в один момент импульсы окажутся в двух различных точках пространства одновременно».

Такие возможности, которые открывает нам использование пространственно-временных волновых пакетов, может иметь очень серьезные последствия для телекоммуникационной области. Ученые приводят в качестве примера синхронную отсылку сообщений с самолета на две субмарины, находящиеся на одной глубине, но на разном удалении от самолета.

С первого взгляда может показаться, что технология пространственно-временных волновых пакетов противоречит ряду ключевых законов классической физики, но ученые утверждают, что на самом деле все происходит в полном соответствии со Специальной теорией относительности. Ведь данная технология не оперирует собственно колебаниями электромагнитных волн фотонов света, а контролирует скорость, с которой движутся максимумы колебаний волн света. И делается это при помощи устройства, называемого пространственным оптическим модулятором, который реорганизовывает энергию каждого импульса света, «переплетая» его некоторые свойства в пространстве и времени.

«Пространственно-временное преломление света ломает многие из известных нам законов и принципов» — пишут исследователи, — «Но в качестве компенсации этого оно, это явление, дает нам массу новых возможностей для управления распространением света и некоторых его свойств».

Пространственно-временные волновые пакеты: Свет нового класса лазера бросает вызов фундаментальным законам физики

Ученым удалось создать лазер совершенно нового класса, луч света которого не подчиняется некоторым фундаментальным законам физики и оптики. Лучи света этого лазера, которые ученые окрестили термином «пространственно-временные волновые пакеты» (spacetime wave packets), подчиняются каким-то особым правилам отражения и преломления. И эти новые правила можно будет в будущем поставить на службу людям в области коммуникационных технологий в первую очередь.

Из школьного учебника физики нам известно, что свет движется с различной скоростью в среде различных материалов. И чем больше плотность материала, через который проходит свет, тем с меньшей скоростью он, свет, движется в объеме этого материала. Наглядной демонстрацией этого принципа, который называется законом Снеллиуса, является ложка, опущенная в стакан с водой. За счет разницы между плотностями воздуха и воды кажется, что ложка «сломана» на границе контакта воздуха и воды.

Однако, лучи света нового лазера полностью игнорируют закон Снеллиуса. Более того, эти лучи не подчиняются второму из фундаментальных законов — принципу Ферма, который определяет, что свет всегда распространяется по самому короткому пути.

«Лучи пространственно-временных волновых пакетов могут быть настроены так, что они не изменят свою скорость или даже аномально ускорятся, проходя из менее плотного материала в более плотный материал» — пишут исследователи — «При помощи этого явления можно будет сделать так, что два импульса, излученные в разные моменты времени, окажутся в одной точке пространства одновременно, или так, что излученные в один момент импульсы окажутся в двух различных точках пространства одновременно».

Такие возможности, которые открывает нам использование пространственно-временных волновых пакетов, может иметь очень серьезные последствия для телекоммуникационной области. Ученые приводят в качестве примера синхронную отсылку сообщений с самолета на две субмарины, находящиеся на одной глубине, но на разном удалении от самолета.

С первого взгляда может показаться, что технология пространственно-временных волновых пакетов противоречит ряду ключевых законов классической физики, но ученые утверждают, что на самом деле все происходит в полном соответствии со Специальной теорией относительности. Ведь данная технология не оперирует собственно колебаниями электромагнитных волн фотонов света, а контролирует скорость, с которой движутся максимумы колебаний волн света. И делается это при помощи устройства, называемого пространственным оптическим модулятором, который реорганизовывает энергию каждого импульса света, «переплетая» его некоторые свойства в пространстве и времени.

«Пространственно-временное преломление света ломает многие из известных нам законов и принципов» — пишут исследователи, — «Но в качестве компенсации этого оно, это явление, дает нам массу новых возможностей для управления распространением света и некоторых его свойств».

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *