Последние новости
Главная / Наука / Физикам впервые удалось добиться «ветвящегося» распространения света

Физикам впервые удалось добиться «ветвящегося» распространения света

Физикам впервые удалось добиться "ветвящегося" распространения света

Изображение, которое вы видите чуть выше, очень похоже на спутниковый снимок дельты какой-нибудь крупной реки, когда главное русло начинает разделяться на меньшие русла и протоки, которые, в свою очередь, разделяются на еще меньшие. Нечто подобное может происходить и при распространении волн в определенной среде, такое явление называется «ветвящимся потоком» и оно уже наблюдалось учеными-физиками по отношению к потокам электронов (электрическому току), звуковым волнам и океанским волнам. Теперь же ученым удалось добиться этого явления по отношению к видимому свету, и сделать это оказалось достаточно просто, ведь все, что потребовалось для этого — это лазер и пена, состоящая из мелких мыльных пузырей.

Для возникновения ветвящегося потока требуется среда с определенными свойствами. Ее структура должна быть случайной, элементы, из которой состоит структура среды, должны быть больше длины волны потока. И изменения в структуре среды должны происходить достаточно плавно, без каких-либо резких переходов. Если все эти условия соблюдаются, небольшие изменения и колебания структуры среды могут рассеивать поток, заставляя его разделяться и постоянно «ветвиться».

Поведение типа ветвящегося потока характерно для волн, имеющих достаточно большую длину, но получение такого явления по отношению к волнам света являлось достаточно сложным делом, пока исследователи из израильского Технологического института Технион и университета Центральной Флориды не придумали использовать пену из мыльных пузырей как среду для распространения света.

Мембрана каждого пузыря состоит из очень тонкого слоя жидкости, зажатого между двумя слоями молекул поверхностно-активного вещества. Толщина всего этого варьируется от пяти нанометров и нескольких нанометров и такие перепады толщины производят известные всем красочные образы на поверхности мыльных пузырей. Но, эти же самые перепады толщины могут выступать в качестве своего рода зеркал, которые заставляют преломляться, разделяться и ветвиться проходящий сквозь них поток света.

Направив луч света лазера, которому была предварительно придана специальная «плоская» форма, сквозь мыльную пену, ученые увидели, что этот луч начал распространяться по траектории ветвящегося потока. Позже, заменив достаточно яркий лазерный свет потоком слабого белого света, ученые наблюдали за тем, как этот поток начал изменять цвет, расщепляясь на более мелкие потоки. В обычных мыльных пузырях воздушный поток вокруг мембраны вызывает постоянные изменения ее толщины, что приводит к тому, что цветовые образы на поверхности постоянно меняют форму и перемещаются. В мыльной пене отсутствуют значимые воздушные потоки, и образы расщепленного света могут сохранять свою стабильность на протяжении нескольких минут.

Отметим, что данное достижение может оказать очень сильное влияние на область так называемой оптофлюидики, области науки, посвященной взаимодействию света с разными жидкостями. И, если дать волю своей фантазии, то можно представить себе некий оптический процессор, который производит вычисления, манипулируя потоками света при помощи создаваемых искусственно перепадов толщины мембран в среде, через которую проходит этот свет.

И в заключение следует упомянуть, что ветвление потока света в трех измерениях — это явление, о возможности которого ученые догадывались уже достаточно давно, но которое ни разу не наблюдалось на практике до последнего времени.

Смотрите также

Ученые-физики, возможно, получили первые экспериментальные доказательства существования «темного бозона»

Ученые-физики, возможно, получили первые экспериментальные доказательства существования "темного бозона"

Две независимые группы ученых, принимающие участие в «охоте» на частицы таинственной темной материи, опубликовали недавно результаты своих исследований, которые вступают в достаточно сильное противоречие. Первая из упомянутых групп вообще не получила никаких достоверных результатов в отличие от второй группы. А в результатах, полученных второй группой, возможно, присутствуют первые экспериментальные доказательства существования «темных бозонов», что дает ученым все основания на продолжение поиска и исследований в данном направлении.

Темные бозоны уже некоторое время являются кандидатами на звание частиц темной материи, таинственной субстанции, на долю которой приходится большая часть от всей материи во Вселенной и которая силами своей гравитации удерживает такие громадные космические образования, как галактики и скопления галактик.

К сожалению, обнаружение «темных» бозонов в нашем «светлом» мире столь же сложно, как попытка услышать шепот на большом расстоянии во время шторма. Однако, физикам, вооруженным сверхчувствительными научными приборами, может вполне хватать и уровня «шепота», для них сейчас самым главным является постановка своего эксперимента в идеально подходящих для него условиях.

Две исследовательские группы, о которых речь шла немного выше, одна из Массачусетского технологического института (MIT), другая — из Орхусского университета в Дании, проводили очень схожие эксперименты. Ученые искали очень малые различия в положении электрона атома изотопа, который перескакивал между дискретными энергетическими уровнями. Если бы эти различия были найдены, это могло указать на возможность «толчка» со стороны темного бозона, который возник бы в результате взаимодействия между орбитальным электроном и определенным типом кварка, который входит в состав нейтронов ядра атома.

Первая группа в своих экспериментах использовала группу изотопов иттербия, а вторая — атомы кальция. Участники обеих групп выстроили полученные ими результаты в определенном порядке, и данные, полученные при помощи атомов кальция, выстроились в четкую линию, которая полностью подчинялась формулам из существующих теорий. Зато эксперимент с атомами иттербия дал весьма значительные статистические отклонения от линейного закона.

Отметим, что ученым еще очень рано открывать шампанское. С одной стороны, присутствие темного бозона может являться причиной наблюдаемых отклонений. Но, этими же причинами могут быть и другие, такие, как погрешности произведенных измерений и вычислений, тип использованной учеными коррекции, называемой квадратичным полевым сдвигом и т.п.

Вполне естественно, что сейчас еще никто не в состоянии объяснить, почему один из схожих экспериментов вообще не дал никаких результатов, а второй дал достаточно значительные отклонения от теории. Для поиска такого объяснения ученым потребуется больше данных, намного больше, чем было собрано в ходе этих экспериментов и других, связанных с поисками частиц темной материи.

И весьма вероятно, что новый 100-километровый коллайдер, сооружение которого планируется в Женеве, более чувствительное научное оборудование и новые «умные» способы поисков влияния на наш мир фактически не существующих сейчас частиц, помогут нам в будущем найти ответы на вопросы, возникшие в нынешнее время и в недалеком прошлом.

Ученые-физики, возможно, получили первые экспериментальные доказательства существования "темного бозона"

Две независимые группы ученых, принимающие участие в «охоте» на частицы таинственной темной материи, опубликовали недавно результаты своих исследований, которые вступают в достаточно сильное противоречие. Первая из упомянутых групп вообще не получила никаких достоверных результатов в отличие от второй группы. А в результатах, полученных второй группой, возможно, присутствуют первые экспериментальные доказательства существования «темных бозонов», что дает ученым все основания на продолжение поиска и исследований в данном направлении.

Темные бозоны уже некоторое время являются кандидатами на звание частиц темной материи, таинственной субстанции, на долю которой приходится большая часть от всей материи во Вселенной и которая силами своей гравитации удерживает такие громадные космические образования, как галактики и скопления галактик.

К сожалению, обнаружение «темных» бозонов в нашем «светлом» мире столь же сложно, как попытка услышать шепот на большом расстоянии во время шторма. Однако, физикам, вооруженным сверхчувствительными научными приборами, может вполне хватать и уровня «шепота», для них сейчас самым главным является постановка своего эксперимента в идеально подходящих для него условиях.

Две исследовательские группы, о которых речь шла немного выше, одна из Массачусетского технологического института (MIT), другая — из Орхусского университета в Дании, проводили очень схожие эксперименты. Ученые искали очень малые различия в положении электрона атома изотопа, который перескакивал между дискретными энергетическими уровнями. Если бы эти различия были найдены, это могло указать на возможность «толчка» со стороны темного бозона, который возник бы в результате взаимодействия между орбитальным электроном и определенным типом кварка, который входит в состав нейтронов ядра атома.

Первая группа в своих экспериментах использовала группу изотопов иттербия, а вторая — атомы кальция. Участники обеих групп выстроили полученные ими результаты в определенном порядке, и данные, полученные при помощи атомов кальция, выстроились в четкую линию, которая полностью подчинялась формулам из существующих теорий. Зато эксперимент с атомами иттербия дал весьма значительные статистические отклонения от линейного закона.

Отметим, что ученым еще очень рано открывать шампанское. С одной стороны, присутствие темного бозона может являться причиной наблюдаемых отклонений. Но, этими же причинами могут быть и другие, такие, как погрешности произведенных измерений и вычислений, тип использованной учеными коррекции, называемой квадратичным полевым сдвигом и т.п.

Вполне естественно, что сейчас еще никто не в состоянии объяснить, почему один из схожих экспериментов вообще не дал никаких результатов, а второй дал достаточно значительные отклонения от теории. Для поиска такого объяснения ученым потребуется больше данных, намного больше, чем было собрано в ходе этих экспериментов и других, связанных с поисками частиц темной материи.

И весьма вероятно, что новый 100-километровый коллайдер, сооружение которого планируется в Женеве, более чувствительное научное оборудование и новые «умные» способы поисков влияния на наш мир фактически не существующих сейчас частиц, помогут нам в будущем найти ответы на вопросы, возникшие в нынешнее время и в недалеком прошлом.

Linac 4 — новый мощный линейный ускоритель, который будет «кормить» протонами кольцо Большого Адронного Коллайдера

Linac 4 - новый мощный линейный ускоритель, который будет "кормить" протонами кольцо Большого Адронного Коллайдера

Почти после двух лет простоя, связанного с ремонтными работами и очередной модернизацией, Большой Адронный Коллайдер начинает подавать первые признаки своего «возвращения к жизни». Этими признаками стало включение нового мощного линейного ускорителя частиц Linac 4, который к настоящему моменту уже успел пройти ряд начальных тестов. Все эти тесты были направлены на проверку его возможности производить намного более высокоэнергетические лучи разогнанных частиц, чем это мог сделать его предшественник, ускоритель Linac 2, который находился в распоряжении Европейской организации ядерных исследований CERN последние 40 лет.

Напомним нашим читателям, что коллайдер был остановлен в декабре 2018 года с целью его глубокой модернизации, получившей название HL-LHC (High-Luminosity Large Hadron Collider). Когда коллайдер, являющийся самым большим и мощным ускорителем частиц в мире, будет выведен на полную мощность в 2026 году, он станет в семь раз мощнее, чем до последней модернизации. И за счет этого он сможет обеспечить ученым в десять раз большее количество данных, чем собиралось ранее за сопоставимые промежутки времени.

Как уже упоминалось выше, новый линейный ускоритель Linac 4 уже был полностью смонтирован и в течение последних нескольких недель проводились его первые тесты. Этот ускоритель является отправной точкой работы всего коллайдера в целом, ускоренные им протоны подаются в синхротронный ускоритель Proton Synchrotron (PS) Booster и оттуда дальше — в основное кольцо коллайдера. Энергия протонов, которые будут подаваться в ускоритель PS с ускорителя Linac 4, составит 160 МэВ, для сравнения, протоны на выходе ускорителя Linac 2 имели энергию порядка 50 МэВ. Ускоритель PS, используя более высокоэнергетические входящие лучи, сможет разогнать их уже до энергии в 2 ГэВ.

До середины августа этого года ускоритель Linac 4 вырабатывал только низкоэнергетические лучи, используя для их разгона только свою правую половину. 20 августа было произведено первое включение ускорителя, в котором была задействована его полная длина, и на выходе появились первые лучи максимальной мощности. Эти лучи были направлены в специальную ловушку, которая поглощает высокоэнергетические частицы, не производя потоков вторичного излучения.

Дальнейшие испытания ускорителя Linac 4 будут продолжаться еще несколько месяцев. В сентябре разогнанные лучи протонов уже будут посланы в сторону ускорителя PS через специальную линию «накачки». Но эти лучи также закончат свой путь внутри ловушки. Первый же луч, который будет уже подан в ускоритель PS, будет сгенерирован ускорителем Linac 4 7 декабря этого года. А первые лучи начнут циркулировать в кольце Большого Адронного Коллайдера с сентября 2021 года, на четыре месяца позже заранее запланированного срока, что связано с пандемией, вызванной вирусом COVID-19.

Linac 4 - новый мощный линейный ускоритель, который будет "кормить" протонами кольцо Большого Адронного Коллайдера

Почти после двух лет простоя, связанного с ремонтными работами и очередной модернизацией, Большой Адронный Коллайдер начинает подавать первые признаки своего «возвращения к жизни». Этими признаками стало включение нового мощного линейного ускорителя частиц Linac 4, который к настоящему моменту уже успел пройти ряд начальных тестов. Все эти тесты были направлены на проверку его возможности производить намного более высокоэнергетические лучи разогнанных частиц, чем это мог сделать его предшественник, ускоритель Linac 2, который находился в распоряжении Европейской организации ядерных исследований CERN последние 40 лет.

Напомним нашим читателям, что коллайдер был остановлен в декабре 2018 года с целью его глубокой модернизации, получившей название HL-LHC (High-Luminosity Large Hadron Collider). Когда коллайдер, являющийся самым большим и мощным ускорителем частиц в мире, будет выведен на полную мощность в 2026 году, он станет в семь раз мощнее, чем до последней модернизации. И за счет этого он сможет обеспечить ученым в десять раз большее количество данных, чем собиралось ранее за сопоставимые промежутки времени.

Как уже упоминалось выше, новый линейный ускоритель Linac 4 уже был полностью смонтирован и в течение последних нескольких недель проводились его первые тесты. Этот ускоритель является отправной точкой работы всего коллайдера в целом, ускоренные им протоны подаются в синхротронный ускоритель Proton Synchrotron (PS) Booster и оттуда дальше — в основное кольцо коллайдера. Энергия протонов, которые будут подаваться в ускоритель PS с ускорителя Linac 4, составит 160 МэВ, для сравнения, протоны на выходе ускорителя Linac 2 имели энергию порядка 50 МэВ. Ускоритель PS, используя более высокоэнергетические входящие лучи, сможет разогнать их уже до энергии в 2 ГэВ.

До середины августа этого года ускоритель Linac 4 вырабатывал только низкоэнергетические лучи, используя для их разгона только свою правую половину. 20 августа было произведено первое включение ускорителя, в котором была задействована его полная длина, и на выходе появились первые лучи максимальной мощности. Эти лучи были направлены в специальную ловушку, которая поглощает высокоэнергетические частицы, не производя потоков вторичного излучения.

Дальнейшие испытания ускорителя Linac 4 будут продолжаться еще несколько месяцев. В сентябре разогнанные лучи протонов уже будут посланы в сторону ускорителя PS через специальную линию «накачки». Но эти лучи также закончат свой путь внутри ловушки. Первый же луч, который будет уже подан в ускоритель PS, будет сгенерирован ускорителем Linac 4 7 декабря этого года. А первые лучи начнут циркулировать в кольце Большого Адронного Коллайдера с сентября 2021 года, на четыре месяца позже заранее запланированного срока, что связано с пандемией, вызванной вирусом COVID-19.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *