Последние новости
Главная / Наука / Долгая «охота за темной материей» принесла первые и неожиданные результаты

Долгая «охота за темной материей» принесла первые и неожиданные результаты

Долгая "охота за темной материей" принесла первые и неожиданные результаты

Ученые, задействованные в реализации международного проекта XENON, самого высокочувствительного датчика в мире на сегодняшний день, ориентированного на поиски темной материи, объявили о факте регистрации этим датчиком избыточного количества событий определенного рода. Пока еще эти ученые не могут утверждать, что им, наконец, удалось обнаружить таинственную темную материю, они лишь обнаружили увеличение количества определенных событий, источник которых остается величиной неизвестной. Некоторые параметры этих событий содержат подпись, которая может являться следствием присутствия остаточных следовых концентраций трития (атомов водорода с одним протоном и двумя нейтронами), но все это может также являться и признаками чего-то более экзотического — существования частицы, называемой солнечным аксионом, или проявления ранее неизвестных свойств частиц нейтрино.

Напомним нашим читателям, что датчик эксперимента XENON1T располагается глубоко под горой Gran Sasso в Италии и он работал в промежутке с 2016 по 2018 год. Как уже упоминалось выше, главной задачей этого датчика было обнаружение темной материи, на долю которой, как предполагают ученые, приходится 85 процентов от общего количества материи во Вселенной. Детекторы датчика XENON1T, имеющего определенный диапазон чувствительности, ориентированы на поиски так называемых WIMP-частиц (Weakly Interacting Massive Particle), которые считаются одним из основных кандидатов на должность частиц темной материи. И, как следствие высокой чувствительности датчика, эксперимент XENON1T оказался способен собирать данные о различных других частицах и экзотических взаимодействиях между ними, которые могут объяснить неразрешенные пока вопросы в области фундаментальной физики. Отметим, что именно при помощи этого датчика в прошлом году ученым удалось зарегистрировать самый редкий из всех известных видов ядерного распада.

Долгая "охота за темной материей" принесла первые и неожиданные результаты

Датчик XENON1T заполнен 3.2 тоннами сверхчистого охлажденного ксенона, находящегося в жидком состоянии. В активной области датчика, за которой наблюдают «глаза» высокочувствительных оптических детекторов, находится непосредственно 2 тонны ксенона. Эти оптические детекторы улавливают даже самые слабые световые сигналы, порождаемые свободными электронами, выбитыми из атомов ксенона другими частицами. Большинство регистрируемых световых сигналов имеет отношение к взаимодействиям атомов ксенона с известными частицами, и эти сигналы создают своего рода постоянный фон. Именно в этом фоне, сравнивая его с теоретическими и практическими значениями, полученными в ходе других экспериментов, ученые нашли избыток сигналов определенного рода, 53 лишних события на фоне ожидаемых 232 событий.

Как уже упоминалось выше, некоторые параметры событий указывают на то, что их источником могут быть атомы трития, крошечное количество которых так или иначе сумело пройти сквозь процедуру очистки ксенона для датчика. Радиоактивный тритий спонтанно распадается, выпуская электрон, энергия которого приблизительно соответствует параметрам регистрируемых сигналов. И для того, чтобы объяснить переизбыток таких событий потребуется всего несколько атомов трития на каждые 10^25 (10,000,000,000,000,000,000,000,000) атомов ксенона. К сожалению, в настоящее время не существует методик измерений, при помощи которых можно или подтвердить или опровергнуть наличие такого крайне малого количества трития в ксеноне и, поэтому, такое объяснение наблюдаемого феномена находится под знаком вопроса.

Все вышесказанное открывает простор для полета фантазии и возможностей существования других вариантов объяснений. Более того, избыточные сигналы имеют энергетический спектр, подобно спектру, ожидаемому от присутствия солнечных аксионов, гипотетических частиц, рожденных в недрах Солнца. Солнечные аксионы не входят в ряд кандидатов частиц темной материи, но их обнаружение и изучение может оказать очень большое воздействие на наше понимание фундаментальной физики, процессов, задействованных в астрофизических явлениях различных масштабов. При этом считается, что аксионы, возникшие в самые первые периоды существования Вселенной, впоследствии стали источником темной материи.

Долгая "охота за темной материей" принесла первые и неожиданные результаты

Также источником избыточных сигналов могут являться частицы нейтрино, триллионы которых проходят каждую секунду через кубический сантиметр объема пространства. Если магнитный момент частиц нейтрино немного выше значения, определяемого Стандартной моделью физики элементарных частиц, то такие частицы могли вызвать характерные сигналы в датчике XENON1T и они, параллельно с этим, являются указанием на существование совершенно новых областей физики, не вписывающихся ни в рамки Стандартной модели, ни в рамки фундаментальной физики.

Параметры избыточных сигналов имеют наибольший уровень совпадения с теоретическими сигналами от солнечных аксионов. Имеющееся количество данных об этих событиях обеспечивают статистическую достоверность в 3.5 сигма, означающую, что существует вероятность в 2/10000 того, что наблюдаемые отклонения (избыток) сигналов носит случайный характер или является результатом погрешности измерений. 3.5 сигма — это уже достаточно высокое значение, для того, чтобы принимать его всерьез, а гипотезы относительно трития и магнитного момента нейтрино имеют более низкую достоверность, равную 3.2 сигма.

В настоящее время оборудование эксперимента XENON1T проходит стадию очередной модернизации, после чего эксперимент получит следующее название из серии XENONnT. Количество массы ксенона в активной области датчика будет увеличено в три раза и во столько же раз будет снижен уровень шумов, производимый собственно датчиком. Все это позволит ученым получить более точные данные по поводу отклонений в фоновом сигнале и поднять уровень достоверности данных до требующихся 5 сигма, с уверенностью ответив на вопрос, кто же действительно является виновником — простое загрязнение ксенона тритием, новая частица или вид взаимодействий, выходящий за пределы известной нам физики?

Смотрите также

Ученые-физики, возможно, получили первые экспериментальные доказательства существования «темного бозона»

Ученые-физики, возможно, получили первые экспериментальные доказательства существования "темного бозона"

Две независимые группы ученых, принимающие участие в «охоте» на частицы таинственной темной материи, опубликовали недавно результаты своих исследований, которые вступают в достаточно сильное противоречие. Первая из упомянутых групп вообще не получила никаких достоверных результатов в отличие от второй группы. А в результатах, полученных второй группой, возможно, присутствуют первые экспериментальные доказательства существования «темных бозонов», что дает ученым все основания на продолжение поиска и исследований в данном направлении.

Темные бозоны уже некоторое время являются кандидатами на звание частиц темной материи, таинственной субстанции, на долю которой приходится большая часть от всей материи во Вселенной и которая силами своей гравитации удерживает такие громадные космические образования, как галактики и скопления галактик.

К сожалению, обнаружение «темных» бозонов в нашем «светлом» мире столь же сложно, как попытка услышать шепот на большом расстоянии во время шторма. Однако, физикам, вооруженным сверхчувствительными научными приборами, может вполне хватать и уровня «шепота», для них сейчас самым главным является постановка своего эксперимента в идеально подходящих для него условиях.

Две исследовательские группы, о которых речь шла немного выше, одна из Массачусетского технологического института (MIT), другая — из Орхусского университета в Дании, проводили очень схожие эксперименты. Ученые искали очень малые различия в положении электрона атома изотопа, который перескакивал между дискретными энергетическими уровнями. Если бы эти различия были найдены, это могло указать на возможность «толчка» со стороны темного бозона, который возник бы в результате взаимодействия между орбитальным электроном и определенным типом кварка, который входит в состав нейтронов ядра атома.

Первая группа в своих экспериментах использовала группу изотопов иттербия, а вторая — атомы кальция. Участники обеих групп выстроили полученные ими результаты в определенном порядке, и данные, полученные при помощи атомов кальция, выстроились в четкую линию, которая полностью подчинялась формулам из существующих теорий. Зато эксперимент с атомами иттербия дал весьма значительные статистические отклонения от линейного закона.

Отметим, что ученым еще очень рано открывать шампанское. С одной стороны, присутствие темного бозона может являться причиной наблюдаемых отклонений. Но, этими же причинами могут быть и другие, такие, как погрешности произведенных измерений и вычислений, тип использованной учеными коррекции, называемой квадратичным полевым сдвигом и т.п.

Вполне естественно, что сейчас еще никто не в состоянии объяснить, почему один из схожих экспериментов вообще не дал никаких результатов, а второй дал достаточно значительные отклонения от теории. Для поиска такого объяснения ученым потребуется больше данных, намного больше, чем было собрано в ходе этих экспериментов и других, связанных с поисками частиц темной материи.

И весьма вероятно, что новый 100-километровый коллайдер, сооружение которого планируется в Женеве, более чувствительное научное оборудование и новые «умные» способы поисков влияния на наш мир фактически не существующих сейчас частиц, помогут нам в будущем найти ответы на вопросы, возникшие в нынешнее время и в недалеком прошлом.

Ученые-физики, возможно, получили первые экспериментальные доказательства существования "темного бозона"

Две независимые группы ученых, принимающие участие в «охоте» на частицы таинственной темной материи, опубликовали недавно результаты своих исследований, которые вступают в достаточно сильное противоречие. Первая из упомянутых групп вообще не получила никаких достоверных результатов в отличие от второй группы. А в результатах, полученных второй группой, возможно, присутствуют первые экспериментальные доказательства существования «темных бозонов», что дает ученым все основания на продолжение поиска и исследований в данном направлении.

Темные бозоны уже некоторое время являются кандидатами на звание частиц темной материи, таинственной субстанции, на долю которой приходится большая часть от всей материи во Вселенной и которая силами своей гравитации удерживает такие громадные космические образования, как галактики и скопления галактик.

К сожалению, обнаружение «темных» бозонов в нашем «светлом» мире столь же сложно, как попытка услышать шепот на большом расстоянии во время шторма. Однако, физикам, вооруженным сверхчувствительными научными приборами, может вполне хватать и уровня «шепота», для них сейчас самым главным является постановка своего эксперимента в идеально подходящих для него условиях.

Две исследовательские группы, о которых речь шла немного выше, одна из Массачусетского технологического института (MIT), другая — из Орхусского университета в Дании, проводили очень схожие эксперименты. Ученые искали очень малые различия в положении электрона атома изотопа, который перескакивал между дискретными энергетическими уровнями. Если бы эти различия были найдены, это могло указать на возможность «толчка» со стороны темного бозона, который возник бы в результате взаимодействия между орбитальным электроном и определенным типом кварка, который входит в состав нейтронов ядра атома.

Первая группа в своих экспериментах использовала группу изотопов иттербия, а вторая — атомы кальция. Участники обеих групп выстроили полученные ими результаты в определенном порядке, и данные, полученные при помощи атомов кальция, выстроились в четкую линию, которая полностью подчинялась формулам из существующих теорий. Зато эксперимент с атомами иттербия дал весьма значительные статистические отклонения от линейного закона.

Отметим, что ученым еще очень рано открывать шампанское. С одной стороны, присутствие темного бозона может являться причиной наблюдаемых отклонений. Но, этими же причинами могут быть и другие, такие, как погрешности произведенных измерений и вычислений, тип использованной учеными коррекции, называемой квадратичным полевым сдвигом и т.п.

Вполне естественно, что сейчас еще никто не в состоянии объяснить, почему один из схожих экспериментов вообще не дал никаких результатов, а второй дал достаточно значительные отклонения от теории. Для поиска такого объяснения ученым потребуется больше данных, намного больше, чем было собрано в ходе этих экспериментов и других, связанных с поисками частиц темной материи.

И весьма вероятно, что новый 100-километровый коллайдер, сооружение которого планируется в Женеве, более чувствительное научное оборудование и новые «умные» способы поисков влияния на наш мир фактически не существующих сейчас частиц, помогут нам в будущем найти ответы на вопросы, возникшие в нынешнее время и в недалеком прошлом.

Linac 4 — новый мощный линейный ускоритель, который будет «кормить» протонами кольцо Большого Адронного Коллайдера

Linac 4 - новый мощный линейный ускоритель, который будет "кормить" протонами кольцо Большого Адронного Коллайдера

Почти после двух лет простоя, связанного с ремонтными работами и очередной модернизацией, Большой Адронный Коллайдер начинает подавать первые признаки своего «возвращения к жизни». Этими признаками стало включение нового мощного линейного ускорителя частиц Linac 4, который к настоящему моменту уже успел пройти ряд начальных тестов. Все эти тесты были направлены на проверку его возможности производить намного более высокоэнергетические лучи разогнанных частиц, чем это мог сделать его предшественник, ускоритель Linac 2, который находился в распоряжении Европейской организации ядерных исследований CERN последние 40 лет.

Напомним нашим читателям, что коллайдер был остановлен в декабре 2018 года с целью его глубокой модернизации, получившей название HL-LHC (High-Luminosity Large Hadron Collider). Когда коллайдер, являющийся самым большим и мощным ускорителем частиц в мире, будет выведен на полную мощность в 2026 году, он станет в семь раз мощнее, чем до последней модернизации. И за счет этого он сможет обеспечить ученым в десять раз большее количество данных, чем собиралось ранее за сопоставимые промежутки времени.

Как уже упоминалось выше, новый линейный ускоритель Linac 4 уже был полностью смонтирован и в течение последних нескольких недель проводились его первые тесты. Этот ускоритель является отправной точкой работы всего коллайдера в целом, ускоренные им протоны подаются в синхротронный ускоритель Proton Synchrotron (PS) Booster и оттуда дальше — в основное кольцо коллайдера. Энергия протонов, которые будут подаваться в ускоритель PS с ускорителя Linac 4, составит 160 МэВ, для сравнения, протоны на выходе ускорителя Linac 2 имели энергию порядка 50 МэВ. Ускоритель PS, используя более высокоэнергетические входящие лучи, сможет разогнать их уже до энергии в 2 ГэВ.

До середины августа этого года ускоритель Linac 4 вырабатывал только низкоэнергетические лучи, используя для их разгона только свою правую половину. 20 августа было произведено первое включение ускорителя, в котором была задействована его полная длина, и на выходе появились первые лучи максимальной мощности. Эти лучи были направлены в специальную ловушку, которая поглощает высокоэнергетические частицы, не производя потоков вторичного излучения.

Дальнейшие испытания ускорителя Linac 4 будут продолжаться еще несколько месяцев. В сентябре разогнанные лучи протонов уже будут посланы в сторону ускорителя PS через специальную линию «накачки». Но эти лучи также закончат свой путь внутри ловушки. Первый же луч, который будет уже подан в ускоритель PS, будет сгенерирован ускорителем Linac 4 7 декабря этого года. А первые лучи начнут циркулировать в кольце Большого Адронного Коллайдера с сентября 2021 года, на четыре месяца позже заранее запланированного срока, что связано с пандемией, вызванной вирусом COVID-19.

Linac 4 - новый мощный линейный ускоритель, который будет "кормить" протонами кольцо Большого Адронного Коллайдера

Почти после двух лет простоя, связанного с ремонтными работами и очередной модернизацией, Большой Адронный Коллайдер начинает подавать первые признаки своего «возвращения к жизни». Этими признаками стало включение нового мощного линейного ускорителя частиц Linac 4, который к настоящему моменту уже успел пройти ряд начальных тестов. Все эти тесты были направлены на проверку его возможности производить намного более высокоэнергетические лучи разогнанных частиц, чем это мог сделать его предшественник, ускоритель Linac 2, который находился в распоряжении Европейской организации ядерных исследований CERN последние 40 лет.

Напомним нашим читателям, что коллайдер был остановлен в декабре 2018 года с целью его глубокой модернизации, получившей название HL-LHC (High-Luminosity Large Hadron Collider). Когда коллайдер, являющийся самым большим и мощным ускорителем частиц в мире, будет выведен на полную мощность в 2026 году, он станет в семь раз мощнее, чем до последней модернизации. И за счет этого он сможет обеспечить ученым в десять раз большее количество данных, чем собиралось ранее за сопоставимые промежутки времени.

Как уже упоминалось выше, новый линейный ускоритель Linac 4 уже был полностью смонтирован и в течение последних нескольких недель проводились его первые тесты. Этот ускоритель является отправной точкой работы всего коллайдера в целом, ускоренные им протоны подаются в синхротронный ускоритель Proton Synchrotron (PS) Booster и оттуда дальше — в основное кольцо коллайдера. Энергия протонов, которые будут подаваться в ускоритель PS с ускорителя Linac 4, составит 160 МэВ, для сравнения, протоны на выходе ускорителя Linac 2 имели энергию порядка 50 МэВ. Ускоритель PS, используя более высокоэнергетические входящие лучи, сможет разогнать их уже до энергии в 2 ГэВ.

До середины августа этого года ускоритель Linac 4 вырабатывал только низкоэнергетические лучи, используя для их разгона только свою правую половину. 20 августа было произведено первое включение ускорителя, в котором была задействована его полная длина, и на выходе появились первые лучи максимальной мощности. Эти лучи были направлены в специальную ловушку, которая поглощает высокоэнергетические частицы, не производя потоков вторичного излучения.

Дальнейшие испытания ускорителя Linac 4 будут продолжаться еще несколько месяцев. В сентябре разогнанные лучи протонов уже будут посланы в сторону ускорителя PS через специальную линию «накачки». Но эти лучи также закончат свой путь внутри ловушки. Первый же луч, который будет уже подан в ускоритель PS, будет сгенерирован ускорителем Linac 4 7 декабря этого года. А первые лучи начнут циркулировать в кольце Большого Адронного Коллайдера с сентября 2021 года, на четыре месяца позже заранее запланированного срока, что связано с пандемией, вызванной вирусом COVID-19.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *