Последние новости
Главная / Медицина / Создан простой и компактный хирургический робот-оригами, обеспечивающий высокую точность проведения операций на микромасштабном уровне

Создан простой и компактный хирургический робот-оригами, обеспечивающий высокую точность проведения операций на микромасштабном уровне

Создан простой и компактный хирургический робот-оригами, обеспечивающий высокую точность проведения операций на микромасштабном уровне

Специализированные роботы уже давно используются в хирургии, позволяя врачам проводить операции дистанционно и обеспечивая, при этом, высочайший уровень контроля и точности. Однако, практически все такие медицинские роботы являются сложнейшими машинами, весьма дорогостоящими и громоздкими, занимающими порой практически все доступное пространство возле операционного стола. И для того, чтобы сделать область хирургической робототехники более доступной для массового применения, исследователи из Гарвардского университета и корпорации Sony разработали миниатюрного робота, размер которого сопоставим с размером теннисного мяча, но который, тем не менее, обеспечивает высочайшую точность при проведении операций на микромасштабном уровне.

Основанием робота является металлическая платформа, на которой закреплена структура, изготовленная из композитного материала, обладающего высокой гибкостью. Эта структура-оригами, имеющая форму параллелограмма, может вращаться, перемещаться вверх и вниз, опускать и поднимать «манипулятор», на конце которого закреплен хирургический инструмент. А управляют всеми этими движениями всего три специальных высокоточных привода.

«Тело» этого хирургического робота было изготовлено при помощи самой современной технологии, в которой несколько слоев различных материалов были уложены друг поверх друга и подвергнуты процессу лазерной резки для придания всему этому необходимой формы. Крошечные высокоточные линейные приводы изготовлены из пьезоэлектрического керамического материала, который, искривляясь в ответ на подаваемые электрические сигналы, создает движение. А это движение, в свою очередь, контролируется оптическими датчиками.

Во время испытаний к роботу было подключенной устройство, которое можно назвать «трехмерным джойстиком», который оцифровывал движения руки человека и передавал роботу, который в точности их повторял. Человек, смотря в микроскоп, должен был провести наконечником инструмента по периметру квадрата, размер которого меньше размера шарика в наконечнике шариковой ручки. После этого робот выполнил данную операцию самостоятельно в автоматическом режиме. И в результате робот обеспечил точность, на 68 процентов превосходящую точность человека.

Вторым испытанием робота было моделирование операции по катетеризации ретинальной вены. В этой операции хирург вводит крошечный катетер в вену, находящуюся позади глазного яблока. В испытаниях были использованы силиконовые трубки, с соответствующим диаметром, приблизительно в толщину человеческого волоса и робот сумел сделать очень чистый прокол при помощи специальной иглы, не нанеся никакого побочного ущерба.

В пользу использования подобных устройств в медицине говорят те факты, что эти устройства достаточно недороги в производстве, их легко монтировать и демонтировать вручную, перемещать на другое место и т.п. А разработчики этого робота планирую продолжить свою работу, направленную на улучшение конструкции, увеличение силы и точности приводов, что позволит этому роботу использовать более тяжелые и большие по размерам инструменты, что, в свою очередь, значительно расширит его возможности.

Смотрите также

Машины-монстры: Самая маленькая в мире камера, предназначенная для 3D-сканирования кровеносных сосудов изнутри

Машины-монстры: Самая маленькая в мире камера, предназначенная для 3D-сканирования кровеносных сосудов изнутри

Группа ученых-медиков и инженеров из университета Аделаиды, Австралия, и университета Штутгарта, Германия, разработали и создали опытный образец устройства, толщиной с человеческий волос, которое можно назвать самой маленькой камерой и самым маленьким трехмерным сканером в мире на сегодняшний день. Во время испытаний эта камера была помещена внутрь сосудов кровеносной системы подопытных грызунов и созданные при ее помощи трехмерные изображения, обладающие очень высокой разрешающей способностью, позволили напрямую увидеть внешние признаки некоторых заболеваний.

Основой этой камеры является нить тончайшего оптоволокна, заключенная в специальную защитную оболочку. При помощи технологии трехмерной микропечати на торце оптоволокна создано зеркало, расположенное под углом в 45 градусов к плоскости волокна, и крошечная линза, диаметр которой равен 0.13 миллиметра, слишком маленькая для того, чтобы ее можно было увидеть невооруженным глазом.

Машины-монстры: Самая маленькая в мире камера, предназначенная для 3D-сканирования кровеносных сосудов изнутри

Второй конец оптоволокна подключен с устройством-сканером оптической когерентной томографии (optical coherence tomography, OCT). Технология OCT — это технология 3D-сканирования, разработанная изначально для составления «карт» сетчатки глаза, в ней используется свет близкого инфракрасного диапазона, позволяющий «заглянуть» вглубь тканей, измеряя разницу между опорным и сканирующим лучами света. В результате этого получаются трехмерные изображения, на которых видно не только поверхность, но и структуру тканей под поверхностью в высочайшей разрешающей способности.

Получившееся устройство, эндоскоп, является настолько маленьким, что его можно ввести внутрь кровеносного сосуда, медленно вращая и перемещая вдоль, получать изображение внутренней поверхности сосуда и тканей на глубину в половину миллиметра. Это, в свою очередь, позволяет увидеть микротрещины, отложения жиров, холестерина и других веществ, которые «растут» на стенках кровеносных сосудов и являются причиной многих заболеваний сердечно-сосудистой системы.

Машины-монстры: Самая маленькая в мире камера, предназначенная для 3D-сканирования кровеносных сосудов изнутри

Как уже упоминалось выше, первые испытания крошечного эндоскопа были проведены на подопытных грызунах, после чего было получено добро на испытания системы на человеке. Эти испытания показали, что использование линзы, изготовленной при помощи высокоточного метода, позволяет сканеру получать глубину изображения в пять раз большую, чем это могут обеспечить подобные устройства, созданные ранее. Более того, гибкость и миниатюрность устройства позволит проникнуть и произвести сканирование в самых труднодоступных местах и получить изображение не только кровеносных сосудов, но и нервных тканей, к примеру.

Машины-монстрывсе о самых исключительных машинах, механизмах и устройствах в мире, от громадных средств уничтожения себе подобных до крошечных точнейших устройств, механизмов и всего того, что находится в промежутке между ними.

Машины-монстры: Самая маленькая в мире камера, предназначенная для 3D-сканирования кровеносных сосудов изнутри

Группа ученых-медиков и инженеров из университета Аделаиды, Австралия, и университета Штутгарта, Германия, разработали и создали опытный образец устройства, толщиной с человеческий волос, которое можно назвать самой маленькой камерой и самым маленьким трехмерным сканером в мире на сегодняшний день. Во время испытаний эта камера была помещена внутрь сосудов кровеносной системы подопытных грызунов и созданные при ее помощи трехмерные изображения, обладающие очень высокой разрешающей способностью, позволили напрямую увидеть внешние признаки некоторых заболеваний.

Основой этой камеры является нить тончайшего оптоволокна, заключенная в специальную защитную оболочку. При помощи технологии трехмерной микропечати на торце оптоволокна создано зеркало, расположенное под углом в 45 градусов к плоскости волокна, и крошечная линза, диаметр которой равен 0.13 миллиметра, слишком маленькая для того, чтобы ее можно было увидеть невооруженным глазом.

Машины-монстры: Самая маленькая в мире камера, предназначенная для 3D-сканирования кровеносных сосудов изнутри

Второй конец оптоволокна подключен с устройством-сканером оптической когерентной томографии (optical coherence tomography, OCT). Технология OCT — это технология 3D-сканирования, разработанная изначально для составления «карт» сетчатки глаза, в ней используется свет близкого инфракрасного диапазона, позволяющий «заглянуть» вглубь тканей, измеряя разницу между опорным и сканирующим лучами света. В результате этого получаются трехмерные изображения, на которых видно не только поверхность, но и структуру тканей под поверхностью в высочайшей разрешающей способности.

Получившееся устройство, эндоскоп, является настолько маленьким, что его можно ввести внутрь кровеносного сосуда, медленно вращая и перемещая вдоль, получать изображение внутренней поверхности сосуда и тканей на глубину в половину миллиметра. Это, в свою очередь, позволяет увидеть микротрещины, отложения жиров, холестерина и других веществ, которые «растут» на стенках кровеносных сосудов и являются причиной многих заболеваний сердечно-сосудистой системы.

Машины-монстры: Самая маленькая в мире камера, предназначенная для 3D-сканирования кровеносных сосудов изнутри

Как уже упоминалось выше, первые испытания крошечного эндоскопа были проведены на подопытных грызунах, после чего было получено добро на испытания системы на человеке. Эти испытания показали, что использование линзы, изготовленной при помощи высокоточного метода, позволяет сканеру получать глубину изображения в пять раз большую, чем это могут обеспечить подобные устройства, созданные ранее. Более того, гибкость и миниатюрность устройства позволит проникнуть и произвести сканирование в самых труднодоступных местах и получить изображение не только кровеносных сосудов, но и нервных тканей, к примеру.

Машины-монстрывсе о самых исключительных машинах, механизмах и устройствах в мире, от громадных средств уничтожения себе подобных до крошечных точнейших устройств, механизмов и всего того, что находится в промежутке между ними.

Роботы-лейкоциты, способные двигаться против кровотока, будут бороться с различными заболеваниями изнутри тела человека

Роботы-лейкоциты, способные двигаться против кровотока, будут бороться с различными заболеваниями изнутри тела человека

Одним из самых перспективных направлений микро- и нано-робототехники является целевая доставка лекарственных препаратов, осуществляемая при помощи крошечных роботов, двигающихся в теле человека по кровеносным сосудам. Самой последней разработкой в этом направлении являются микророботы-лейкоциты, созданные исследователями из института Макса Планка, Германия. И главным отличием новых микророботов от всех, что были созданы ранее, является то, что новые роботы, которые являются «технологическим воплощением» лейкоцитов, способны передвигаться в направлении, противоположном направлению кровотока в кровеносных сосудах.

Основой новых микророботов являются стеклянные микрочастицы, диаметром около 8 микрометров. Одна половина частицы покрыта тонкой пленкой никеля, поверх которой нанесен защитный слой из золота, а на вторую половину частицы наносится слой лекарственного препарата, полезного груза микроробота. Во время первых испытания полезный груз робота состоял из молекул противоракового препарата и специальных белков, способных находить и притягиваться к злокачественным клеткам.

Вместо того, чтобы плавать в кровяной плазме, как это делают другие микророботы, новые роботы движутся вдоль стенок сосудов, подобно лейкоцитам. А направлением этого движения можно управлять при помощи внешнего магнитного поля, которое притягивает никель, и заставляет робота двигаться в нужном направлении.

Роботы-лейкоциты, способные двигаться против кровотока, будут бороться с различными заболеваниями изнутри тела человека

Исследователи выяснили при помощи экспериментов с искусственными кровеносными сосудами, что даже не очень сильное магнитное поле, которое совершенно безопасно для организма человека, заставляет роботов двигаться в направлении, противоположном направлению течения крови. А когда магнитное поле деактивируется, роботы движутся вместе с кровью. Чередование моментов включения и отключения магнитного поля позволяет ученым контролировать движение роботов с высокой точностью и направлять их в заданное место в теле человека.

Во время испытаний ученые установили, что скорость движения роботов под воздействие магнитного поля составляет 600 микрометров в секунду (76 их собственных диаметров в секунду). Это делает новых роботов самыми быстрыми «магнитными микророботами» такого масштаба на сегодняшний день.

Поскольку размер одного микроробота очень мал, он не сможет нести на себе достаточного количества полезного груда, для того, чтобы оказать существенное влияние на пораженные болезнью ткани. Поэтому в организм человека нужно будет вводить достаточно большое количество таких роботов, что, дополнительно, облегчит слежение за ними при помощи традиционных методов съемки, применяемых в медицине.

И в заключение следует отметить, что помимо целевой доставки лекарственных препаратов, новые микророботы, снабженные соответствующим грузом, могут быть использованы для проведения неинвазивной, быстрой и точной диагностики самых различных видов заболеваний.

Роботы-лейкоциты, способные двигаться против кровотока, будут бороться с различными заболеваниями изнутри тела человека

Одним из самых перспективных направлений микро- и нано-робототехники является целевая доставка лекарственных препаратов, осуществляемая при помощи крошечных роботов, двигающихся в теле человека по кровеносным сосудам. Самой последней разработкой в этом направлении являются микророботы-лейкоциты, созданные исследователями из института Макса Планка, Германия. И главным отличием новых микророботов от всех, что были созданы ранее, является то, что новые роботы, которые являются «технологическим воплощением» лейкоцитов, способны передвигаться в направлении, противоположном направлению кровотока в кровеносных сосудах.

Основой новых микророботов являются стеклянные микрочастицы, диаметром около 8 микрометров. Одна половина частицы покрыта тонкой пленкой никеля, поверх которой нанесен защитный слой из золота, а на вторую половину частицы наносится слой лекарственного препарата, полезного груза микроробота. Во время первых испытания полезный груз робота состоял из молекул противоракового препарата и специальных белков, способных находить и притягиваться к злокачественным клеткам.

Вместо того, чтобы плавать в кровяной плазме, как это делают другие микророботы, новые роботы движутся вдоль стенок сосудов, подобно лейкоцитам. А направлением этого движения можно управлять при помощи внешнего магнитного поля, которое притягивает никель, и заставляет робота двигаться в нужном направлении.

Роботы-лейкоциты, способные двигаться против кровотока, будут бороться с различными заболеваниями изнутри тела человека

Исследователи выяснили при помощи экспериментов с искусственными кровеносными сосудами, что даже не очень сильное магнитное поле, которое совершенно безопасно для организма человека, заставляет роботов двигаться в направлении, противоположном направлению течения крови. А когда магнитное поле деактивируется, роботы движутся вместе с кровью. Чередование моментов включения и отключения магнитного поля позволяет ученым контролировать движение роботов с высокой точностью и направлять их в заданное место в теле человека.

Во время испытаний ученые установили, что скорость движения роботов под воздействие магнитного поля составляет 600 микрометров в секунду (76 их собственных диаметров в секунду). Это делает новых роботов самыми быстрыми «магнитными микророботами» такого масштаба на сегодняшний день.

Поскольку размер одного микроробота очень мал, он не сможет нести на себе достаточного количества полезного груда, для того, чтобы оказать существенное влияние на пораженные болезнью ткани. Поэтому в организм человека нужно будет вводить достаточно большое количество таких роботов, что, дополнительно, облегчит слежение за ними при помощи традиционных методов съемки, применяемых в медицине.

И в заключение следует отметить, что помимо целевой доставки лекарственных препаратов, новые микророботы, снабженные соответствующим грузом, могут быть использованы для проведения неинвазивной, быстрой и точной диагностики самых различных видов заболеваний.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *