Главная / Медицина / Ожерелье обнаруживает аномальный сердечный ритм

Ожерелье обнаруживает аномальный сердечный ритм

Ожерелье обнаруживает аномальный сердечный ритм

Сердечная аритмия — это опасность, которая подстерегает многих из нас. К группе риска относятся не только пожилые люди, но и кто подвержен таким факторам, как стресс и шум, которые могут вызвать опасные нарушения в работе сердца. Если вовремя не обнаружить такие нарушения, то это может привести к инфаркту, инсульту или остановке сердца. Врачи из Финляндии разработали ожерелье, помогающее обнаружить сердечную аритмию.

Небольшие нарушения сердечного ритма опасны прежде всего тем, что обычно происходят нерегулярно и непредсказуемо. Поэтому их не всегда легко диагностировать. Решение, представленное финскими врачами на конференции Европейского кардиологического общества, призвано решить эту проблему. Ученые разработали ожерелье, в которое встроены электроды ЭКГ. Это позволяет владельцам проверить свое сердцебиение в любое время с помощью приложения. Все, что им нужно сделать, это запустить приложение и держать подвеску на груди в течение 30 секунд.

Электрод измеряет сердцебиение и передает данные приложению. Затем приложение отправляет набор данных в облако, где искусственный интеллект сравнивает его с эталонными значениями и обнаруживает любую мерцательную аритмию предсердий. Результат можно получить в течение нескольких секунд. Также генерируется отчет ЭКГ, который пациент может передать своему врачу.

Команда, работающая под руководством Эльмери Санталы из Университета Восточной Финляндии, уже протестировала ожерелье в ходе клинического исследования. В общей сложности 145 испытуемых проверили сердцебиение с помощью цепочки ЭКГ и одновременно записали ЭКГ по классическому методу. Исследование показало, что электроды в ожерелье смогли с высокой точностью обнаружить мерцательную аритмию предсердий. Показатели диагностики были аналогичны показателям классического метода.

«Эта портативная ожерельевая ЭКГ представляет собой новый и простой метод обнаружения сердечных аритмий.», — сказал Сантала.

Пациенты старше 65 лет, должны регулярно проверять свой сердечный ритм, так как у них особенно высок риск возникновения аритмии. Однако, если обнаружение происходит достаточно рано, то ее относительно легко лечить — либо с помощью лекарств, либо с помощью кардиостимулятора. ЭКГ-ожерелье может значительно облегчить пациентам контроль сердечного ритма.

«ЭКГ-ожерелье» удобно в использовании и позволяет пациентам многократно проверять свой сердечный ритм самостоятельно. Это увеличивает вероятность обнаружения мерцательной аритмии, — объясняет Сантала. В настоящее время цепочка проходит испытания, но исследователи уверены, что смогут вывести ее на рынок в ближайшем будущем.

Ссылка на исследование: escardio.org

Смотрите также

Новый квантовый материал: теллурид марганца и висмута

Новый квантовый материал: теллурид марганца и висмута
Монокристалл материала марганцево-висмут-теллурид длиной чуть менее миллиметра. Это первый антиферромагнитный топологический изолятор. (Изображение: А. Исаева, TU Dresden / Лейбниц IFW)

Международный консорциум химиков и физиков открыл новый тип квантового материала с магнитными и топологическими свойствами. Это особенно интересно для применений в спинтронике, двумерном магнетизме и квантовом транспорте, поскольку не требует легирования и сильных внешних магнитных полей.

С момента своего открытия в 2009 году топологические изоляторы стали горячей темой в физике материалов. Что в них особенного, так это то, что они могут действовать как изоляторы и как электрические проводники одновременно. Хотя внутри кристаллов имеется электроизоляционное состояние, поверхности кристаллов являются электропроводящими.

Большой научный интерес к топологическим изоляторам связан с новыми квантовыми состояниями, которые можно наблюдать в этом классе материалов. Как своего рода питательная среда для новых квазичастиц и экзотических квантовых явлений, они представляют собой серьезную проблему для теоретического описания, а также для синтеза и экспериментальных исследований.

Особые усилия предпринимаются для изучения взаимодействия топологических фаз в магнитных топологических изоляторах. Исследователи из Института исследования твердого тела и материалов им. Лейбница в Дрездене и ТУ Дрездена разработали методику, которая использовалась для выращивания первых монокристаллов магнитного топологического материала теллурида марганца висмута.

Это вещество структурно сходно с классическим топологическим изолятором, теллуридом висмута, но также имеет периодическую подрешетку из атомов марганца. При температуре ниже 24 Кельвин эти атомы марганца образуют упорядоченную трехмерную магнитную решетку.

Коллеги по теории из Испании обнаружили, что существенные топологические свойства теллурида марганца-висмута обусловлены тригональной кристаллической структурой и антиферромагнитной связью промежуточных слоев. Нетривиальная топология проявляется в поверхностных состояниях, которые экспериментаторы из Вюрцбурга и Санкт-Петербурга изучали независимо друг от друга с помощью фотоэлектронной спектроскопии с угловым разрешением.

Все части этой головоломки кратко изложены в недавно опубликованной статье в журнале Nature. В результате подтверждается, что теллурид марганца висмута является первым антиферромагнитным топологическим изолятором ниже его температуры Нееля, то есть в температурном диапазоне, в котором устанавливается длиннопространственный магнитный порядок.

Это открытие имеет большое значение для возможного применения топологических изоляторов. Новый материал висмут-марганец-теллурид открывает возможность обойтись без легирования и сильных внешних магнитных полей, так как магнетизм уже внутренне заложен в стехиометрическом соединении.

МеткиКвантовая физика

По материалам

new-science.ru

Новый квантовый материал: теллурид марганца и висмута
Монокристалл материала марганцево-висмут-теллурид длиной чуть менее миллиметра. Это первый антиферромагнитный топологический изолятор. (Изображение: А. Исаева, TU Dresden / Лейбниц IFW)

Международный консорциум химиков и физиков открыл новый тип квантового материала с магнитными и топологическими свойствами. Это особенно интересно для применений в спинтронике, двумерном магнетизме и квантовом транспорте, поскольку не требует легирования и сильных внешних магнитных полей.

С момента своего открытия в 2009 году топологические изоляторы стали горячей темой в физике материалов. Что в них особенного, так это то, что они могут действовать как изоляторы и как электрические проводники одновременно. Хотя внутри кристаллов имеется электроизоляционное состояние, поверхности кристаллов являются электропроводящими.

Большой научный интерес к топологическим изоляторам связан с новыми квантовыми состояниями, которые можно наблюдать в этом классе материалов. Как своего рода питательная среда для новых квазичастиц и экзотических квантовых явлений, они представляют собой серьезную проблему для теоретического описания, а также для синтеза и экспериментальных исследований.

Особые усилия предпринимаются для изучения взаимодействия топологических фаз в магнитных топологических изоляторах. Исследователи из Института исследования твердого тела и материалов им. Лейбница в Дрездене и ТУ Дрездена разработали методику, которая использовалась для выращивания первых монокристаллов магнитного топологического материала теллурида марганца висмута.

Это вещество структурно сходно с классическим топологическим изолятором, теллуридом висмута, но также имеет периодическую подрешетку из атомов марганца. При температуре ниже 24 Кельвин эти атомы марганца образуют упорядоченную трехмерную магнитную решетку.

Коллеги по теории из Испании обнаружили, что существенные топологические свойства теллурида марганца-висмута обусловлены тригональной кристаллической структурой и антиферромагнитной связью промежуточных слоев. Нетривиальная топология проявляется в поверхностных состояниях, которые экспериментаторы из Вюрцбурга и Санкт-Петербурга изучали независимо друг от друга с помощью фотоэлектронной спектроскопии с угловым разрешением.

Все части этой головоломки кратко изложены в недавно опубликованной статье в журнале Nature. В результате подтверждается, что теллурид марганца висмута является первым антиферромагнитным топологическим изолятором ниже его температуры Нееля, то есть в температурном диапазоне, в котором устанавливается длиннопространственный магнитный порядок.

Это открытие имеет большое значение для возможного применения топологических изоляторов. Новый материал висмут-марганец-теллурид открывает возможность обойтись без легирования и сильных внешних магнитных полей, так как магнетизм уже внутренне заложен в стехиометрическом соединении.

МеткиКвантовая физика

По материалам

new-science.ru

Машины-монстры: Самая маленькая в мире камера, предназначенная для 3D-сканирования кровеносных сосудов изнутри

Машины-монстры: Самая маленькая в мире камера, предназначенная для 3D-сканирования кровеносных сосудов изнутри

Группа ученых-медиков и инженеров из университета Аделаиды, Австралия, и университета Штутгарта, Германия, разработали и создали опытный образец устройства, толщиной с человеческий волос, которое можно назвать самой маленькой камерой и самым маленьким трехмерным сканером в мире на сегодняшний день. Во время испытаний эта камера была помещена внутрь сосудов кровеносной системы подопытных грызунов и созданные при ее помощи трехмерные изображения, обладающие очень высокой разрешающей способностью, позволили напрямую увидеть внешние признаки некоторых заболеваний.

Основой этой камеры является нить тончайшего оптоволокна, заключенная в специальную защитную оболочку. При помощи технологии трехмерной микропечати на торце оптоволокна создано зеркало, расположенное под углом в 45 градусов к плоскости волокна, и крошечная линза, диаметр которой равен 0.13 миллиметра, слишком маленькая для того, чтобы ее можно было увидеть невооруженным глазом.

Машины-монстры: Самая маленькая в мире камера, предназначенная для 3D-сканирования кровеносных сосудов изнутри

Второй конец оптоволокна подключен с устройством-сканером оптической когерентной томографии (optical coherence tomography, OCT). Технология OCT — это технология 3D-сканирования, разработанная изначально для составления «карт» сетчатки глаза, в ней используется свет близкого инфракрасного диапазона, позволяющий «заглянуть» вглубь тканей, измеряя разницу между опорным и сканирующим лучами света. В результате этого получаются трехмерные изображения, на которых видно не только поверхность, но и структуру тканей под поверхностью в высочайшей разрешающей способности.

Получившееся устройство, эндоскоп, является настолько маленьким, что его можно ввести внутрь кровеносного сосуда, медленно вращая и перемещая вдоль, получать изображение внутренней поверхности сосуда и тканей на глубину в половину миллиметра. Это, в свою очередь, позволяет увидеть микротрещины, отложения жиров, холестерина и других веществ, которые «растут» на стенках кровеносных сосудов и являются причиной многих заболеваний сердечно-сосудистой системы.

Машины-монстры: Самая маленькая в мире камера, предназначенная для 3D-сканирования кровеносных сосудов изнутри

Как уже упоминалось выше, первые испытания крошечного эндоскопа были проведены на подопытных грызунах, после чего было получено добро на испытания системы на человеке. Эти испытания показали, что использование линзы, изготовленной при помощи высокоточного метода, позволяет сканеру получать глубину изображения в пять раз большую, чем это могут обеспечить подобные устройства, созданные ранее. Более того, гибкость и миниатюрность устройства позволит проникнуть и произвести сканирование в самых труднодоступных местах и получить изображение не только кровеносных сосудов, но и нервных тканей, к примеру.

Машины-монстрывсе о самых исключительных машинах, механизмах и устройствах в мире, от громадных средств уничтожения себе подобных до крошечных точнейших устройств, механизмов и всего того, что находится в промежутке между ними.

Машины-монстры: Самая маленькая в мире камера, предназначенная для 3D-сканирования кровеносных сосудов изнутри

Группа ученых-медиков и инженеров из университета Аделаиды, Австралия, и университета Штутгарта, Германия, разработали и создали опытный образец устройства, толщиной с человеческий волос, которое можно назвать самой маленькой камерой и самым маленьким трехмерным сканером в мире на сегодняшний день. Во время испытаний эта камера была помещена внутрь сосудов кровеносной системы подопытных грызунов и созданные при ее помощи трехмерные изображения, обладающие очень высокой разрешающей способностью, позволили напрямую увидеть внешние признаки некоторых заболеваний.

Основой этой камеры является нить тончайшего оптоволокна, заключенная в специальную защитную оболочку. При помощи технологии трехмерной микропечати на торце оптоволокна создано зеркало, расположенное под углом в 45 градусов к плоскости волокна, и крошечная линза, диаметр которой равен 0.13 миллиметра, слишком маленькая для того, чтобы ее можно было увидеть невооруженным глазом.

Машины-монстры: Самая маленькая в мире камера, предназначенная для 3D-сканирования кровеносных сосудов изнутри

Второй конец оптоволокна подключен с устройством-сканером оптической когерентной томографии (optical coherence tomography, OCT). Технология OCT — это технология 3D-сканирования, разработанная изначально для составления «карт» сетчатки глаза, в ней используется свет близкого инфракрасного диапазона, позволяющий «заглянуть» вглубь тканей, измеряя разницу между опорным и сканирующим лучами света. В результате этого получаются трехмерные изображения, на которых видно не только поверхность, но и структуру тканей под поверхностью в высочайшей разрешающей способности.

Получившееся устройство, эндоскоп, является настолько маленьким, что его можно ввести внутрь кровеносного сосуда, медленно вращая и перемещая вдоль, получать изображение внутренней поверхности сосуда и тканей на глубину в половину миллиметра. Это, в свою очередь, позволяет увидеть микротрещины, отложения жиров, холестерина и других веществ, которые «растут» на стенках кровеносных сосудов и являются причиной многих заболеваний сердечно-сосудистой системы.

Машины-монстры: Самая маленькая в мире камера, предназначенная для 3D-сканирования кровеносных сосудов изнутри

Как уже упоминалось выше, первые испытания крошечного эндоскопа были проведены на подопытных грызунах, после чего было получено добро на испытания системы на человеке. Эти испытания показали, что использование линзы, изготовленной при помощи высокоточного метода, позволяет сканеру получать глубину изображения в пять раз большую, чем это могут обеспечить подобные устройства, созданные ранее. Более того, гибкость и миниатюрность устройства позволит проникнуть и произвести сканирование в самых труднодоступных местах и получить изображение не только кровеносных сосудов, но и нервных тканей, к примеру.

Машины-монстрывсе о самых исключительных машинах, механизмах и устройствах в мире, от громадных средств уничтожения себе подобных до крошечных точнейших устройств, механизмов и всего того, что находится в промежутке между ними.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *